Skip to main content
Log in

Quantum solutions for densest k-subgraph problems

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

In this paper, we present, for the first time, quantum annealing solutions for densest k-subgraph problems which have many applications in computational biology. Our solutions are formulated as solutions for quadratic unconstrained binary optimization (QUBO) and integer programming problems, proved to be equivalent with the densest k-subgraph problems and then tested on an D-Wave 2X machine. The QUBO formulations are optimal in terms of the number of logical qubits, but require the highest number of physical qubits after embedding. Experimental work reported here suggests that the D-Wave 2X model cannot handle problems of this difficulty. The next generation of D-wave hardware architecture—the Pegasus architecture—is much denser than the current one, so dense QUBOs will be easier to embed. The experimental work also suggests that the current built-in post-processing optimization method does not work very well for some problems and the default setting (post-processing optimization on) should be avoided (or at least tested before being turned on).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This particular formulation is actually a \(0-1\) IP formulation as well.

  2. These publications refer to the map size as ‘chain length’ which could be somewhat misleading since the set of physical qubits do not necessarily form a path.

References

  1. Abbott, A. A., Calude, C. S., Dinneen, M. J., & Hua, R. (2018). A hybrid quantum-classical paradigm to mitigate embedding costs in quantum annealing. CDMTCS Report Series 520.

  2. Billionnet, A. (2005). Different formulations for solving the heaviest k-subgraph problem. INFOR: Information Systems and Operational Research, 43(3), 171–186.

    MathSciNet  Google Scholar 

  3. Bollobás, B. (1981). Degree sequences of random graphs. Discrete Mathematics, 33(1), 1–19.

    Article  MathSciNet  Google Scholar 

  4. Bomze, I. M., Budinich, M., Pardalos, P., & Pelillo, M. (1999). Handbook of combinatorial optimization. In D.-Z. Du & P. M. Pardalos (Eds.), chap. The maximum clique problem (pp. 1–74). Dordrecht: Kluwer Academic Publishers.

    MATH  Google Scholar 

  5. Boothby, T., King, A. D., & Roy, A. (2016). Fast clique minor generation in Chimera quit connectivity graphs. Quantum Information Processing, 15(1), 495–508.

    Article  MathSciNet  Google Scholar 

  6. Calude, C. S., Calude, E., & Dinneen, M. J. (2015). Adiabatic quantum computing challenges. ACM SIGACT News, 46(1), 40–61. https://doi.org/10.1145/2744447.2744459.

    Article  MathSciNet  Google Scholar 

  7. Calude, C. S., Dinneen, M. J., & Hua, R. (2017). QUBO formulations for the graph isomorphism problem and related problems. Theoretical Computer Science. https://doi.org/10.1016/j.tcs.2017.04.016.

  8. Calude, C. S., Dinneen, M. J., & Hua, R. (2019). Quantum solutions for densest \(k\)-subgraph problems. Report CDMTCS-540, Centre for Discrete Mathematics and Theoretical Computer Science, University of Auckland, Auckland, New Zealand. https://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports. Accessed Dec 2019.

  9. Canzar, S., Andreotti, S., Weese, D., Reinert, K., & Klau, G. W. (2016). CIDANE: Comprehensive isoform discovery and abundance estimation. Genome Biology, 17, 16.

    Article  Google Scholar 

  10. Corneil, D. G., & Perl, Y. (1984). Clustering and domination in perfect graphs. Discrete Applied Mathematics, 9(1), 27–39.

    Article  MathSciNet  Google Scholar 

  11. D-Wave Systems. (2018). D-Wave Problem-Solving Handbook. User Manual. https://docs.dwavesys.com/docs/latest/doc_handbook.html. Accessed Dec 2019.

  12. D-Wave Systems. (2018). D-Wave Solver Properties and Parameters Reference. User Manual. https://docs.dwavesys.com/docs/latest/doc_solver_ref.html. Accessed Dec 2019.

  13. D-Wave Systems. (2018). Postprocessing Methods on D-Wave Systems. User Manual. https://docs.dwavesys.com/docs/latest/doc_post-processing.html. Accessed Dec 2019.

  14. D-Wave Systems. (2019). Next-Generation Topology of D-Wave Quantum Processors. https://www.dwavesys.com/sites/default/files/14-1026A- C_Next-Generation-Topology-of-DW-Quantum-Processors.pdf. Accessed Dec 2019.

  15. D-Wave Systems, Inc. (2018). Developer guide for Python. Technical Report Release 2.4 09-1024A-K.

  16. Dinneen, M. J., & Hua, R. (2017). Formulating graph covering problems for adiabatic quantum computers. In: Proceedings of the Australasian Computer Science Week Multiconference, ACSW ’17 (pp. 18:1–18:10). New York, NY, USA: ACM. https://doi.org/10.1145/3014812.3014830.

  17. Fratkin, E., Naughton, B. T., Brutlag, D. L., & Batzoglou, S. (2006). Motifcut: Regulatory motifs finding with maximum density subgraphs. Bioinformatics, 22(14), e150–1e57.

    Article  Google Scholar 

  18. Hagberg, A., Schult, D., & Swart, P. (2019). NetworkX. Software for Complex Networks

  19. Hamerly, R., Inagaki, T., McMahon, P. L., Venturelli, D., Marandi, A., Onodera, T., et al. (2019). Experimental investigation of performance differences between coherent ising machines and a quantum annealer. Science Advances, 5(5), eaau0823.

    Article  Google Scholar 

  20. Hua, R., & Dinneen, M. J. (2020). Improved QUBO formulation of the graph isomorphism problem. SN Computer Science, 1(1), 19.

    Article  Google Scholar 

  21. Jensen, F. V., Lauritzen, S. L., & Olesen, K. G. (1990). Bayesian updating incausal probabilistic networks by local computations. Computational Statistics Quarterly, 4, 269–282.

    MATH  Google Scholar 

  22. Kadowaki, T., & Nishimori, H. (1998). Quantum annealing in the transverse ising model. Physical Review E, 58(5), 5355.

    Article  Google Scholar 

  23. Keil, J. M., & Brecht, T. B. (1991). The complexity of clustering in planar graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 9, 155–159.

    MathSciNet  MATH  Google Scholar 

  24. Khuller, S., Saha, B. (2009) On finding dense subgraphs. In: Proceedings of the 36th International Colloquium on Automata, Languages and Programming: Part I, ICALP ’09 (pp. 597–608). Berlin: Springer. https://doi.org/10.1007/978-3-642-02927-1_50.

  25. Markowitz, H. M. (1957). The elimination form of the inverse and its application to linear programming. Management Science, 3(3), 255–269.

    Article  MathSciNet  Google Scholar 

  26. McGeoch, C. C. (2014). Adiabatic quantum computation and quantum annealing. Theory and practice. San Rafael: Morgan & Claypool Publishers.

    Book  Google Scholar 

  27. McGeoch, C. C., Harris, R., Reinhardt, S. P., & Bunyk, P. I. (2019). Practical annealing-based quantum computing. Computer, 52, 38–46.

    Article  Google Scholar 

  28. Paun, G., Rozenberg, G., & Salomaa, A. (2010). The oxford handbook of membrane computing. New York: Oxford University Press Inc.

    Book  Google Scholar 

  29. Pudenz, K. L., Albash, T., & Lidar, D. A. (2014). Error-corrected quantum annealing with hundreds of qubits. Nature Communications, 5, 3243.

    Article  Google Scholar 

  30. Saha, B., Hoch, A., Khuller, S., Raschid, L., & Zhang, X. N. (2010). Dense subgraphs with restrictions and applications to gene annotation graphs. In B. Berger (Ed.), Research in computational molecular biology (pp. 456–472). Berlin: Springer.

    Chapter  Google Scholar 

  31. Stein, W., et al. (2016). Sage mathematics software (version 7.0).

Download references

Acknowledgements

This work was supported in part by the Quantum Computing Research Initiatives at Lockheed Martin. We thank the anonymous referees for useful comments which improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian S. Calude.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Python script to generate random bipartite graphs

figure d

Appendix 2: Python script to generate QUBOs

figure e

Appendix 3: Sage script to solve the edge-weighted densest k-subgraph problem

figure f

Appendix 4: Randomized algorithm to solve the edge-weighted densest k-subgraph problem

figure g

Appendix 5: Drawing of a sample test graph

figure h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calude, C.S., Dinneen, M.J. & Hua, R. Quantum solutions for densest k-subgraph problems. J Membr Comput 2, 26–41 (2020). https://doi.org/10.1007/s41965-019-00030-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-019-00030-1

Keywords

Navigation