Skip to main content
Log in

Bounding the space in P systems with active membranes

  • Survey Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

P systems with active membranes have been widely used to attack problems in \({\mathbf{NP}}\) or even in \({{\mathbf{PSPACE }}}\); in general, an exponential amount of space is generated in polynomial time by dividing existing membranes. Natural questions arise in this framework, concerning the power of P systems when different bounds are considered for the use of the space resource. We consider in this paper two natural bounds: the amount of available physical space (in terms of the number of objects and membranes) and the organization of the membrane structure (in particular, concerning the depth of the membrane structure). We present the main results obtained so far on this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alhazov, A., Martin-Vide, C., & Pan, L. (2003). Solving a PSPACE-complete problem by recognizing P systems with restricted active membranes. Fundamenta Informaticae, 58(2), 67–77.

    MathSciNet  MATH  Google Scholar 

  2. Alhazov, A., Leporati, A., Mauri, G., Porreca, A. E., & Zandron, C. (2014). Space complexity equivalence of P systems with active membranes and Turing machines. Theoretical Computer Science, 529, 69–81.

    Article  MathSciNet  Google Scholar 

  3. Alhazov, A., Pan, L., & Păun, Gh. (2004). Trading polarizations for labels in P systems with active membranes. Acta Informatica, 41, 111–144.

    Article  MathSciNet  Google Scholar 

  4. Gazdag, Z., & Kolonits, G. (2019). A new method to simulate restricted variants of polarizationless P systems with active membranes. Journal of Membrane Computing, 1(4), 251–261. https://doi.org/10.1007/s41965-019-00024-z.

    Article  MathSciNet  Google Scholar 

  5. Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., Riscos-Núñez, A., & Romero-Campero, F. J. (2006). On the power of dissolution in P systems with active membranes, In: Freund, R., Păun, G., Rozenberg, Salomaa, A., (eds), 6th International Workshop on Membrane Computing, WMC 2005, LNCS 3850, Springer, 224–240.

  6. Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., & Romero-Campero, F. J. (2006). A Linear Solution for QSAT with Membrane Creation. In R. Freund, Gh Păun, G. Rozenberg, & A. Salomaa (Eds.), 6th International Workshop on Membrane Computing (pp. 241–252). WMC 2005, LNCS 3850, Springer, New York.

  7. Ishdorj, T. O., Replicative, Ionescu M., Rules, Distribution, & in P Systems with Active Membranes, ICTAC. (2004). LNCS 3407. Springer, New York, 2004, 68–83.

  8. Leporati, A., Ferretti, C., Mauri, G., Pérez-Jiménez, M. J., & Zandron, C. (2008). Complexity aspects of polarizationless membrane systems. Natural Computing, 8(4), 703–717.

    Article  MathSciNet  Google Scholar 

  9. Leporati, A., Mauri, G., Porreca, A. E., & Zandron, C. (2011). Elementary active membranes have the power of counting. International Journal of Natural Computing Research, 2(3), 35–48.

    Article  Google Scholar 

  10. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2014). A gap in the space hierarchy of P systems with active membranes. Journal of Automata, Languages and Combinatorics, 19(1–4), 173–184.

    MathSciNet  MATH  Google Scholar 

  11. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2014). Constant-space P systems with active membranes. Fundamenta Informaticae, 134, 111–128.

    Article  MathSciNet  Google Scholar 

  12. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2014). Simulating Elementary Active Membrane. In M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sosík, & C. Zandron (Eds.), 15th International Conference on Membrane Computing (pp. 284–299). CMC 2014, LNCS 8961, Springer, New York.

  13. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2015). Membrane division, oracles, and the counting hierarchy. Fundamenta Informaticae, 138, 97–111.

    Article  MathSciNet  Google Scholar 

  14. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2016). Monodirectional P systems. Natural Computing, 15, 551–564.

    Article  MathSciNet  Google Scholar 

  15. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2017). A toolbox for simpler active membrane algorithms. Theoretical Computer Science, 673, 42–57.

    Article  MathSciNet  Google Scholar 

  16. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2017). Characterising the complexity of tissue P systems with fission rules. Journal of Computer and System Sciences, 90, 115–128.

    Article  MathSciNet  Google Scholar 

  17. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2016). Shallow non-confluent P systems. In A. Leporati, G. Rozenberg, A. Salomaa, & C. Zandron (Eds.), 17th International Conference on Membrane Computing (pp. 307–316). CMC 2016, LNCS 10105, Springer, New York.

  18. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2018). Solving QSAT in sublinear depth. In T. Hinze, G. Rozenberg, A. Salomaa, & C. Zandron (Eds.), 19th International Conference on Membrane Computing (pp. 188–201). CMC 2018, LNCS 11399, Springer, New York.

  19. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2019). Characterizing PSPACE with shallow non-confluent P systems. Journal of Membrane Computing, 1(2), 75–84. https://doi.org/10.1007/s41965-019-00011-4.

    Article  MathSciNet  MATH  Google Scholar 

  20. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2020). Shallow laconic P systems can count. Journal of Membrane Computing, 1(1), 49–58. https://doi.org/10.1007/s41965-020-00032-4.

    Article  MathSciNet  Google Scholar 

  21. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2020). A Turing machine simulation by P systems without charges. Journal of Membrane Computing,. https://doi.org/10.1007/s41965-020-00031-5.

    Article  MATH  Google Scholar 

  22. Mauri, G., Pérez-Jiménez, M. J., Zandron, C., & On a Păun’s conjecture in membrane systems, IWINAC,. (2007). LNCS 4527. Springer, New York, 2007, 180–192.

  23. Mix Barrington, D. A., Immerman, N., & Straubing, H. (1990). On uniformity within \(\rm NC^1\). Journal of Computer and System Sciences, 41(3), 274–306.

    Article  MathSciNet  Google Scholar 

  24. Murphy, N., Woods, D., & Active membrane systems without charges and using only symmetric elementary division characterise P, 8th Workshop on Membrane Computing, WMC, (2007). LNCS 4860. Springer, New York, 2007, 367–384.

  25. Murphy, N., & Woods, D. (2011). The computational power of membrane systems under tight uniformity conditions. Natural Computing, 10(1), 613–632.

    Article  MathSciNet  Google Scholar 

  26. Orellana-Martín, D., Valencia-Cabrera, L., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2019). Minimal cooperation as a way to achieve the efficiency in cell-like membrane systems. Journal of Membrane Computing, 1(2), 85–92. https://doi.org/10.1007/s41965-018-00004-9.

    Article  MathSciNet  MATH  Google Scholar 

  27. Papadimitriou, C. H. (1993). Computational Complexity. Boston: Addison-Wesley.

    MATH  Google Scholar 

  28. Păun, Gh. (2001). P systems with active membranes: Attacking NP-complete problems. Journal of Automata, Languages and Combinatorics, 6(1), 75–90.

    MathSciNet  MATH  Google Scholar 

  29. Păun, Gh, Rozenberg, G., & Salomaa, A. (Eds.). (2010). Handbook of Membrane Computing. Oxford: Oxford University Press.

    MATH  Google Scholar 

  30. Pérez-Jiménez, M. J. (2009). A Computational Complexity Theory in Membrane Computing. In Gh Păun, M. J. Pérez-Jiménez, A. Riscos-Núñez, G. Rozenberg, & A. Salomaa (Eds.), Tenth International Workshop on Membrane Computing (pp. 125–148). WMC 2009, LNCS 5957, Springer, New York.

  31. Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2005). Solving the subset-sum problem by P systems with active membranes. New Generation Computing, 23, 339–356.

    Article  Google Scholar 

  32. Pérez-Jiménez, M. J., Riscos-Núñez, A., Romero-Jiménez, A., & Woods, D. (2010). Complexity - Membrane division, membrane creation. In Gh Păun, G. Rozenberg, & A. Salomaa (Eds.), Handbook of Membrane Computing (Vol. 12, pp. 302–336). Oxford: Oxford University Press.

    Google Scholar 

  33. Porreca, A. E., Leporati, A., Mauri, G., & Zandron, C. (2009). Introducing a space complexity measure for P systems. International Journal of Computing, Communication and Control, 4(3), 301–310.

    Google Scholar 

  34. Porreca, A. E., Leporati, A., Mauri, G., & Zandron, C. (2011). P systems with elementary active membranes: Beyond NP and coNP. In M. Gheorghe, T. Hinze, Gh Păun, G. Rozenberg, & A. Salomaa (Eds.), 11th International Conference on Membrane Computing (pp. 338–347). CMC 2010, Springer, New York.

  35. Porreca, A. E., Leporati, A., Mauri, G., & Zandron, C. (2011). P systems with active membranes: Trading time for space. Natural Computing, 10(1), 167–182.

    Article  MathSciNet  Google Scholar 

  36. Porreca, A. E., Leporati, A., Mauri, G., & Zandron, C. (2011). P systems with active membranes working in polynomial space. International Journal of Foundation of Computer Science, 22(1), 65–73.

    Article  MathSciNet  Google Scholar 

  37. Porreca, A. E., Leporati, A., Mauri, G., & Zandron, C. (2012). P Systems Simulating Oracle Computations. In M. Gheorghe, G. Păun, A. Salomaa, G. Rozenberg, & S. Verlan (Eds.), 12th International Conference on Membrane Computing (pp. 346–358). CMC 2011, LNCS 7184, Springer, New York.

  38. Porreca, A. E., Leporati, A., Mauri, G., & Zandron, C. (2013). Sublinear Space P systems with Active Membranes. In E. Csuhaj-Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa, & G. Vaszil (Eds.), 13th International Conference on Membrane Computing (pp. 342–357). CMC 2012, LNCS 7762, Springer, New York.

  39. Porreca, A. E., Mauri, G., & Zandron, C. (2006). Complexity classes for membrane systems. RAIRO-Theorerical Informatics and Applications, 40(2), 141–162.

    Article  MathSciNet  Google Scholar 

  40. Porreca, A. E., Mauri, G., & Zandron, C. (2010). Non-confluence in divisionless P systems with active membranes. Theoretical Computer Science, 411, 878–887.

    Article  MathSciNet  Google Scholar 

  41. Sosík, P. (2003). The computational power of cell division in P systems: Beating down parallel computers? Natural Computing, 2(3), 287–298.

    Article  MathSciNet  Google Scholar 

  42. Sosík, P. (2019). P systems attacking hard problems beyond NP: A survey. Journal of Membrane Computing, 1(3), 198–208. https://doi.org/10.1007/s41965-019-00017-y.

    Article  MathSciNet  MATH  Google Scholar 

  43. Sosík, P., & Rodríguez-Patón, A. (2007). Membrane computing and complexity theory: A characterization of PSPACE. Journal of Computer and System Sciences, 73(1), 37–152.

    Article  MathSciNet  Google Scholar 

  44. Sosík, P., Păun, A., Rodríguez-Patón, A., & Pérez, D. (2010). On the Power of Computing with Proteins on Membranes. In Gh Păun, M. J. Pérez-Jiménez, A. Riscos-Núñez, G. Rozenberg, & A. Salomaa (Eds.), 10th international Workshop on Membrane Computing (pp. 448–460). WMC 2009, LNCS 5957, Springer, New York.

  45. Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor, M. A., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2017). Reaching efficiency through collaboration in membrane systems: Dissolution, polarization and cooperation. Theoretical Computer Science, 701, 226–234.

    Article  MathSciNet  Google Scholar 

  46. Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor, M. A., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2017). Computational efficiency of minimal cooperation and distribution in polarizationless P systems with active membranes. Fundamenta Informaticae, 153(1–2), 147–172.

    Article  MathSciNet  Google Scholar 

  47. Zandron, C., Ferretti, C., & Mauri, G. (2000). Solving NP-complete problems using P systems with active membranes. In I. Antoniou, C. S. Calude, & M. J. Dinneen (Eds.), Unconventional Models of Computation, UMC2K (pp. 289–301). Discrete Mathematics and Theoretical Computer Science: Springer, New York.

Download references

Acknowledgements

I wish to thank anonymous reviewers for providing me with useful comments on a previous version of this paper. This work was partially supported by Universitá degli Studi di Milano-Bicocca, Fondo di Ateneo per la Ricerca—(FAR 2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Zandron.

Ethics declarations

Conflicts of interest

The author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The contents of the paper have been presented at the invited talk given at the 20th Conference on Membrane Computing, Curtea de Arges, Romania, August 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zandron, C. Bounding the space in P systems with active membranes. J Membr Comput 2, 137–145 (2020). https://doi.org/10.1007/s41965-020-00039-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-020-00039-x

Keywords

Navigation