Skip to main content
Log in

Recent advance on detecting core-periphery structure: a survey

  • Review Paper
  • Published:
CCF Transactions on Pervasive Computing and Interaction Aims and scope Submit manuscript

Abstract

Recently, one type of mesoscale structure called core-periphery (CP) structure has received much attention in complex networks, as the algorithmic detection of such structures makes it possible to discover network features that are not apparent either at the local scale of nodes and edges or at the global scale of summary statistics. The core-periphery structure refers to that core nodes are densely interconnected, while periphery nodes are connected to core nodes to different extents, and periphery nodes are sparsely interconnected. Core-periphery structure containing a single core or multiple cores has been identified in various networks. However, investigation of the detection problems of the core-periphery has not been summarized in the literature. In this paper, we first introduce the definition of the core-periphery structure. The core-periphery structure has been paid more and more attention by researchers in various fields since its introduction, and it has been proved to be a powerful tool to analyze the theory of various topologies in our society, we briefly expounded the application of core-periphery structure in economics, sociology, medicine and other fields, and revealed the huge development potential of this theory. Then, we give a detailed overview of classical detection algorithms since the core-periphery structure theory was proposed. Finally, we give the development characteristics and the possible research directions of the core-periphery detection algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn, Y.-Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466(7307), 761 (2010)

    Article  Google Scholar 

  • Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership stochastic block models. J. Mach. Learn. Res. 9, 1981–2014 (2008)

    MATH  Google Scholar 

  • Alba, R.D., Moore, G.: Elite social circles. Soc. Methods Res. 7(2), 167–188 (1978)

    Google Scholar 

  • Anastasiou, Dimitrios, Louri, Helen, Tsionas, Mike: Nonperforming loans in the euro area: a re core–periphery banking markets fragmented? Int. J. Finance Econ. 24(1), 97–112 (2019)

    Google Scholar 

  • Bailin, A.: From traditional to Group Hegemony: the G7, the Liberal Economic Order and the Core-Periphery Gap. Routledge, Abingdon (2017)

    Google Scholar 

  • Ball, Brian, Newman, Mark E.J.: Friendship networks and social status. Soc. Netw. 1(1), 16–30 (2013)

    Google Scholar 

  • Bassett, D.S., Wymbs, N.F., Rombach, M.P., Porter, M.A., Mucha, P.J., Grafton, S.T.: Task-based core-periphery organization of human brain dynamics. PLoS Comput. Biol. 9(9), e1003171 (2013)

    Google Scholar 

  • Battiston, F., Guillon, J., Chavez, M., Latora, V., DeVicoFallani, F.: Multiplex core–periphery organization of the human connectome. J. R. Soc. Interface 15(146), 20180514 (2018)

    Google Scholar 

  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)

    MathSciNet  MATH  Google Scholar 

  • Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. Soc. Netw. 21(4), 375–395 (2000)

    Google Scholar 

  • Boyd, J.P., Fitzgerald, W.J., Mahutga, M.C., Smith, D.A.: Computing continuous core/periphery structures for social relations data with minres/svd. Soc. Netw. 32(2), 125–137 (2010)

    Google Scholar 

  • Brassil, A., Nodari, G.: A Density-based estimator of core/periphery network structures: analysing the australian interbank market. No. rdp2018-01. Reserve Bank of Australia (2018)

  • Brusco, M.: An exact algorithm for a core/periphery bipartitioning problem. Soc. Netw. 33(1), 12–19 (2011)

    MathSciNet  Google Scholar 

  • Brusco, M.J., Cradit, J.D.: Graph coloring, minimum-diameter partitioning, and the analysis of confusion matrices. J. Math. Psychol. 48(5), 301–309 (2004)

    MathSciNet  MATH  Google Scholar 

  • Brusco, M.J., Stahl, S.: An interactive multiobjective programming approach to combinatorial data analysis. Psychometrika 66(1), 5–24 (2001)

    MathSciNet  MATH  Google Scholar 

  • Burt, R. B. R. S.: Networks of collective action: a perspective on community influence systems. by Edward O. Laumann; Franz U. Pappi. Contemp. Sociol. 7(2), 152–153 (1978)  

    Google Scholar 

  • Chen, T., Tang, L.-A., Sun, Y., Chen, Z., Chen, H., Jiang, G.: Integrating community and role detection in information networks. In: Proceedings of the 2016 SIAM International Conference on Data Mining, pp, 72–80. SIAM (2016)

  • Cheng, C.-H.: A branch and bound clustering algorithm. IEEE Trans. Syst. Man Cybern 25(5), 895–898 (1995)

    Google Scholar 

  • Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 98 (2008)

    Google Scholar 

  • Copus, A.K.: From core-periphery to polycentric development: concepts of spatial and aspatial peripherality. Eur. Plan. Stud. 9(4), 539–552 (2001)

    Google Scholar 

  • Craig, B., Von Peter, G.: Interbank tiering and money center banks. J. Finan. Intermed. 23(3), 322–347 (2014)

    Google Scholar 

  • Csermely, P., London, A., Ling-Yun, W., Uzzi, B.: Structure and dynamics of core/periphery networks. J. Complex Netw. 1(2), 93–123 (2013)

    Google Scholar 

  • Cucuringu, M., Rombach, P., Lee, S.H., Porter, M.A.: Detection of core–periphery structure in networks using spectral methods and geodesic paths. Eur. J. Appl. Math. 27(6), 846–887 (2016)

    MathSciNet  MATH  Google Scholar 

  • Da Silva, M.R., Ma, H., Zeng, A.-P.: Centrality, network capacity, and modularity as parameters to analyze the core-periphery structure in metabolic networks. Proc. IEEE 96(8), 1411–1420 (2008)

    Google Scholar 

  • Decelle, A., Krzakala, F., Moore, C., Zdeborová, L.: Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. Phys. Rev. E 84(6), 066106 (2011a)

    Google Scholar 

  • Decelle, A., Krzakala, F., Moore, C., Zdeborová, L.: Inference and phase transitions in the detection of modules in sparse networks. Phys. Rev. Lett. 107(6), 065701 (2011b)

    Google Scholar 

  • Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–22 (1977)

    MathSciNet  MATH  Google Scholar 

  • Doreian, P.: Structural equivalence in a psychology journal network. J. Am. Soc. Inf. Sci. 36(6), 411–417 (1985)

    Google Scholar 

  • Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5(1), 17–60 (1960)

    MathSciNet  MATH  Google Scholar 

  • Everett, M.G., Borgatti, S.P.: Peripheries of cohesive subsets. Soc. Netw. 21(4), 397–407 (2000)

    Google Scholar 

  • Fagiolo, G., Reyes, Javier, Schiavo, Stefano: The evolution of the world trade web: a weighted-network analysis. J. Evol. Econ. 20(4), 479–514 (2010)

    Google Scholar 

  • Forslid, R., Ottaviano, G.I.P.: An analytically solvable core-periphery model. J. Econ. Geogr. 3(3), 229–240 (2003)

    Google Scholar 

  • Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    MathSciNet  Google Scholar 

  • Fricke, D., Lux, T.: Core–periphery structure in the overnight money market: evidence from the e-mid trading platform. Comput. Econ. 45(3), 359–395 (2015)

    Google Scholar 

  • Garas, A., Schweitzer, F., Havlin, S.: A k-shell decomposition method for weighted networks. New J. Phys. 14(8), 083030 (2012)

    Google Scholar 

  • Girvan, Mi, Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    MathSciNet  MATH  Google Scholar 

  • Hansen, P., Delattre, M.: Complete-link cluster analysis by graph coloring. J. Am. Stat. Assoc. 73(362), 397–403 (1978)

    MATH  Google Scholar 

  • Hidalgo, C.A., Klinger, B., Barabási, A.-L., Hausmann, R.: The product space conditions the development of nations. Science 317(5837), 482–487 (2007)

    Google Scholar 

  • Holme, P.: Core-periphery organization of complex networks. Phys. Rev. E 72(4), 046111 (2005)

    Google Scholar 

  • Hughes, D.W., Holland, D.W.: (Core-periphery economic linkages: a measure of spread and possible backwash effects for the. Land Econ., 70(3), 1994

  • Jeske, R.J.: World-systems theory, core-periphery interactions, and elite economic exchange in mississippian societies. World-Systems Theory in Practice: Leadership, Production, and Exchange, pp. 203–221 (1999)

  • Jia, J., Benson, A.R: Detecting core-periphery structure in spatial networks. arXiv preprint arXiv:1808.06544 (2018)

  • Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in networks. Phys. Rev. E 83(1), 016107 (2011)

    MathSciNet  Google Scholar 

  • Karwa, V., Pelsmajer, M.J., Petrović, S., Stasi, D., Wilburne, D., et al.: Statistical models for cores decomposition of an undirected random graph. Electron. J. Stat. 11(1), 1949–1982 (2017)

    MathSciNet  MATH  Google Scholar 

  • Klein, G., Aronson, J.E.: Optimal clustering: a model and method. Naval Res. Log. (NRL) 38(3), 447–461 (1991)

    MATH  Google Scholar 

  • Kojaku, S., Masuda, N.: Finding multiple core-periphery pairs in networks. Phys. Rev. E 96(5), 052313 (2017)

    Google Scholar 

  • Kojaku, S., Cimini, G.,Caldarelli, G., Masuda, N.: Structural changes in the interbank market across the financial crisis from multiple core-periphery analysis. arXiv preprint arXiv:1802.05139. (2018)

  • Krugman, P.: Increasing returns and economic geography. J. Polit. Econ. 99(3), 483–499 (1991)

    Google Scholar 

  • Laumann, E.O., Pappi, F.U.: Networks of Collective Action: A Perspective on Community Influence Systems. Elsevier, Amsterdam (2013)

    Google Scholar 

  • Lee, S.H., Cucuringu, M., Porter, M.A.: Density-based and transport-based core-periphery structures in networks. Phys. Rev. E 89(3), 032810 (2014)

    Google Scholar 

  • Lu-An T., et al.: On discovery of traveling companions from streaming trajectories. In: 2012 IEEE 28th International Conference on Data Engineering. IEEE (2012)

  • Ma, C,, Xiang, B.-B., Zhang, H.-F., Chen, H.-S., Small M.: Detection of core-periphery structure in networks by 3-tuple motifs. arXiv preprint arXiv:1705.04062 (2017)

  • Malecki EJ.: Technology and economic development: the dynamics of local, regional, and national change. University of Illinois at Urbana-Champaign’s Academy for Entrepreneurial Leadership Historical Research Reference in Entrepreneurship. (1997)

  • Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296(5569), 910–913 (2002)

    Google Scholar 

  • Mullins, N. C., Hargens, L. L., Kick, H. E. L.: The group structure of cocitation clusters: a comparative study. Am. Sociol. Rev. 42(4), 552–562 (1977)

    Google Scholar 

  • Nemeth, R.J., Smith, D.A.: International trade and world-system structure: a multiple network analysis. Review (Fernand Braudel Center) 8(4), 517–560 (1985)

    Google Scholar 

  • Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)

    MathSciNet  Google Scholar 

  • Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  • Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Google Scholar 

  • Noble, J.: General internal medicine in internal medicine: at the core or on the periphery. Ann. Intern. Med. 116(12_Part_2), 1058–1060 (1992)

    Google Scholar 

  • Nocete, F., Sáez, R., Nieto, J.M., Cruz-Auñón, R., Cabrero, R., Alex, E., Bayona, M.R.: Circulation of silicified oolitic limestone blades in south-iberia (spain and portugal) during the third millennium bc: an expression of a core/periphery framework. J. Anthropol. Archaeol. 24(1), 62–81 (2005)

    Google Scholar 

  • Nowicki, K., Snijders, T.A.B.: Estimation and prediction for stochastic blockstructures. J. Am. Stat. Assoc. 96(455), 1077–1087 (2001)

    MathSciNet  MATH  Google Scholar 

  • Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814 (2005)

    Google Scholar 

  • Ravasz, E., Barabási, A.-L.: Hierarchical organization in complex networks. Phys. Rev. E 67(2), 026112 (2003)

    MATH  Google Scholar 

  • Rombach, M.P., Porter, M.A., Fowler, J.H., Mucha, P.J.: Core-periphery structure in networks. SIAM J. Appl. Math. 74(1), 167–190 (2014)

    MathSciNet  MATH  Google Scholar 

  • Rossa, F.D., Dercole, F., Piccardi, C.: Profiling core-periphery network structure by random walkers. Sci. Rep. 3, 1467 (2013)

    Google Scholar 

  • Ruggera, R.A., Blendinger, P.G., Gomez, M.D., Marshak, C.: Linking structure and functionality in mutualistic networks: do core frugivores disperse more seeds than peripheral species? Oikos 125(4), 541–555 (2016)

    Google Scholar 

  • Shanahan, M., Wildie, M.: Knotty-centrality: finding the connective core of a complex network. PLoS One 7(5), e36579 (2012)

    Google Scholar 

  • Shneiderman, B., Plaisant, C.: Designing the User Interface: Strategies for Effective Human-Computer Interaction. Pearson Education India, New Delhi (2010)

    Google Scholar 

  • Smith, D.A., White, D.R.: Structure and dynamics of the global economy: network analysis of international trade 1965–1980. Soc. Forces 70(4), 857–893 (1992)

    Google Scholar 

  • Snyder, D., Kick, E.L.: Structural position in the world system and economic growth, 1955-1970: a multiple-network analysis of transnational interactions. Am. J. Sociol. 84(5), 1096–1126 (1979)

    Google Scholar 

  • Steiber, S.R.: The world system and world trade: an empirical exploration of conceptual conflicts. Sociol. Q. 20(1), 23–36 (1979)

    Google Scholar 

  • Szymanski, B.K., Yener, B. (eds.): Advances in Pervasive Computing and Networking. Springer Science & Business Media, Berlin (2006)

    Google Scholar 

  • Tickner, A.B.: Core, periphery and (neo) imperialist international relations. Eur. J. Int. Relat. 19(3), 627–646 (2013)

    Google Scholar 

  • Tudisco, F., Higham, D.J.: A nonlinear spectral method for core-periphery detection in networks. SIAM J. Math. Data Sci. 1(2), 269–292 (2019)

    MathSciNet  Google Scholar 

  • Verma, T., Russmann, F., Araújo, N.A.M., Nagler, J., Herrmann, H.J.: Emergence of core–peripheries in networks. Nat. Commun. 7, 10441 (2016)

    Google Scholar 

  • Virtanen, P., Liukkonen, V., Vahtera, J., Kivimäki, M., Koskenvuo, M.: Health inequalities in the workforce: the labour market core–periphery structure. Int. J. Epidemiol. 32(6), 1015–1021 (2003)

    Google Scholar 

  • Waenerlund, A.-K., Gustafsson, P.E., Virtanen, P., Hammarström, A.: Is the core-periphery labour market structure related to perceived health? findings of the northern swedish cohort. BMC Public Health 11(1), 956 (2011)

    Google Scholar 

  • Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  • Xiang, B.-B., Bao, Z.-K., Ma, C., Zhang, X., Chen, H.-S., Zhang, H.-F.: A unified method of detecting core-periphery structure and community structure in networks. Chaos Interdiscip. J. Nonlinear Sci. 28(1), 013122 (2018)

    Google Scholar 

  • Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state-of-the-art and comparative study. Acm Comput. Surv. (csur) 45(4), 43 (2013)

    MATH  Google Scholar 

  • Yan, B., Luo, J.: Multicores-periphery structure in networks. Netw. Sci. 7(1), 70–87 (2019)

    Google Scholar 

  • Yang, J., et al.: Structural correlation between communities and core-periphery structures in social networks: evidence from Twitter data. Expert Syst. Appl. 111, 91–99 (2018)

    Google Scholar 

  • Yang, J., Leskovec, J.: Overlapping communities explain core–periphery organization of networks. Proc. IEEE 102(12), 1892–1902 (2014)

    Google Scholar 

  • Yuan, P., Ma, H.: Hug: Human gathering point based routing for opportunistic networks. In: 2012 IEEE Wireless Communications and Networking Conference (WCNC). IEEE (2012)

  • Zhang, Y., Friend, A.J., Traud, A.L., Porter, M.A., Fowler, J.H., Mucha, P.J.: Community structure in congressional cosponsorship networks. Phys. A Stat. Mech. Appl. 387(7), 1705–1712 (2008)

    Google Scholar 

  • Zhang, X., Martin, T., Newman, M.E.J.: Identification of core-periphery structure in networks. Phys. Rev. E 91(3), 032803 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Zhao, L., Liu, W. et al. Recent advance on detecting core-periphery structure: a survey. CCF Trans. Pervasive Comp. Interact. 1, 175–189 (2019). https://doi.org/10.1007/s42486-019-00016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42486-019-00016-z

Keywords

Navigation