Skip to main content

Advertisement

Log in

Feasibility study of practical vital sign detection using millimeter-wave radios

  • Regular Paper
  • Published:
CCF Transactions on Pervasive Computing and Interaction Aims and scope Submit manuscript

Abstract

The importance of vital sign detection is self-evident in the mobile health domain. Recent work has shown that one can use RF or WiFi signals for respiration and heartbeat detection in a non-contact manner and thus improve its usability compared to the wearable-based solution. However, the existing approaches either require an ultra-wideband radio which is not commercially available or do not perform well in practical working environments. The millimeter-wave (mmWave) radio is a promising solution for fine-grained heartbeat and respiration sensing applications because of its directionality and sensitivity. However, we find traditional mmWave algorithms suffer from background noise in practical scenes. In this article, we address this issue by designing a robust algorithm for heart rate detection based on time-domain and frequency-domain information. We implement a phase-modulated system on the software-defined radio platform and evaluate the algorithm performance. Also, we evaluate the impact of several practical factors, such as detecting distance, aiming point, depression angle, human orientation and beam width on the proposed heart rate algorithm. Finally, we explore the feasibility of mmWave on vital sign detection with strong background interference and in scenes of real life where the antennas are hanging on the ceiling. The results show that the mean estimation error of respiration and heartbeats are 0.487 Bpm and 2.386 bpm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abdelnasser, H., Harras, K.A., Youssef, M.: Ubibreathe: A ubiqui-tous non-invasive wifi-based breathing estimator. ACM MobiHoc (2015)

  • Adib, Fadel, Mao, Hongzi, Kabelac, Zachary, Katabi, Dina, Miller, Robert C.: Smart homes that monitor breathing and heart rate. ACM CHI (2015)

  • Airfide Networks. Airfide-A 5G Company (2019). http://airfidenet.com

  • Anttonen, Jenni, Surakka, Veikko: Emotions and heart rate while sitting on a chair. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 491–499. ACM (2005)

  • Bianchi, A.M., Mendez, M.O., Cerutti, S.: Processing of signals recorded through smart devices: sleep-quality assessment. IEEE Trans. Inf Technol. Biomed. 14(3), 741–747 (2010)

    Google Scholar 

  • Bonde, Amelie, Pan, Shijia, Jia, Zhenhua, Zhang, Yanyong, Noh, Hae Young, Zhang, Pei: Vvrrm: Vehicular vibration-based heart rr-interval monitoring system. In: Proceedings of the 19th International Workshop on Mobile Computing Systems & Applications, pp. 37–42. ACM (2018)

  • Bruser, C., Stadlthanner, K., de Waele, S., Leonhardt, S.: Adaptive beat-to-beat heart rate estimation in ballistocardiograms. IEEE Trans. Inf Technol. Biomed. 15(5), 778–786 (2011)

    Google Scholar 

  • Chen, Baicheng, Li, Huining, Li, Zhengxiong, Chen, Xingyu, Xu, Chenhan, Xu, Wenyao: Thermowave: a new paradigm of wireless passive temperature monitoring via mmwave sensing. In: Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, pp. 1–14 (2020)

  • Chenshu, W., Zhang, F., Wang, B., Liu, K.J.R.: msense: Towards mobile material sensing with a single millimeter-wave radio. Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 4(3), 1–20 (2020)

    Google Scholar 

  • Chuang, H.-R., Kuo, H.-C., Lin, F.-L., Huang, T.-H., Kuo, C.-S., Ou, Y.-W.: 60-ghz millimeter-wave life detection system (mlds) for noncontact human vital-signal monitoring. Sensors J. IEEE (2012)

  • Chung, Gih Sung, Choi, Byoung Hoon, Jeong, Do-Un, Park, Kwang Suk: Noninvasive heart rate variability analysis using loadcell-installed bed during sleep. In: Engineering in Medicine and Biology Society, 2007. EMBS 2007. In: 29th Annual International Conference of the IEEE, pp. 2357–2360. IEEE (2007)

  • Eduardo, P., Octavian, P., Pedro, G.: Theory and developments in an unobtrusive cardiovascular system representation: Ballistocardiography. Open Biomed. Eng. J. 4(1), 201 (2010)

    Google Scholar 

  • Grenvik, A., Ballou, S., McGinley, E., Millen, J.E., Cooley, W.L., Safar, P.: Impedance pneumography: comparison between chest impedance changes and respiratory volumes in 11 healthy volunteers. Chest 62(4), 439–443 (1972)

    Google Scholar 

  • Griffiths, Erin, Saponas, T. Scott, Brush, A.J.: Health chair: implicitly sensing heart and respiratory rate. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 661–671. ACM (2014)

  • Høst-Madsen, Anders, Petrochilos, Nicolas, Boric-Lubecke, Olga, Lubecke, Victor M., Park, Byung-Kwon, Zhou, Qin: Signal processing methods for doppler radar heart rate monitoring. In: Signal processing techniques for knowledge extraction and information fusion, pp. 121–140. Springer (2008)

  • Jason Kao, Te-Yu, Lin, Jenshan: Vital sign detection using 60-ghz doppler radar system. Wireless Symposium (IWS) (2013)

  • Jia, Zhenhua, Alaziz, Musaab, Chi, Xiang, Howard, Richard E., Zhang, Yanyong, Zhang, Pei, Trappe, Wade, Sivasubramaniam, Anand, An, Ning: Hb-phone: a bed-mounted geophone-based heartbeat monitoring system. In: Information Processing in Sensor Networks (IPSN), 2016 15th ACM/IEEE International Conference on, pp. 1–12. IEEE (2016)

  • Jia, Zhenhua, Bonde, Amelie, Li, Sugang, Xu, Chenren, Wang, Jingxian, Zhang, Yanyong, Howard, Richard E., Zhang, Pei: Monitoring a person’s heart rate and respiratory rate on a shared bed using geophones. In: Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems. ACM (2017)

  • Jiang, Chengkun, Guo, Junchen, He, Yuan, Jin, Meng, Li, Shuai, Liu, Yunhao: mmvib: micrometer-level vibration measurement with mmwave radar. In: Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, pp. 1–13 (2020)

  • Kortelainen, J.M., van Gils, M., Parkka, J.: Multichannel bed pressure sensor for sleep monitoring. Comput. Cardiol. 39, 313–316 (2012)

    Google Scholar 

  • Lacruz, Jesus Omar, Garcia, Dolores, Mateo, Pablo Jiménez, Palacios, Joan, Widmer, Joerg: mm-flex: an open platform for millimeter-wave mobile full-bandwidth experimentation. In: Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services, pp. 1–13 (2020)

  • Li, Xiaobai, Chen, Jie, Zhao, Guoying, Pietikäinen, Matti: Remote heart rate measurement from face videos under realistic situations 4264–4271 (2014)

  • Li, C., Lin, J.: Random body movement cancellation in doppler radar vital sign detection. IEEE Trans. Microw. Theory Tech. 56(12), 3143–3152 (2008)

    Google Scholar 

  • Lin, Feng, Song, Chen, Zhuang, Yan, Xu, Wenyao, Li, Changzhi, Ren, Kui: Cardiac scan: A non-contact and continuous heart-based user authentication system. In: The International Conference, pp. 315–328 (2017)

  • Liu, Jian, Wang, Yan, Chen, Yingying, Yang, Jie, Chen, Xu, Cheng, Jerry: Tracking vital signs during sleep leveraging off-the-shelf wifi. ACM MobiHoc (2015)

  • Mayo Clinic What’s a normal resting heart rate? (2018). http://www.mayoclinic.org/healthy-living/fitness/expert-answers/heart-rate/faq-20057979. Accessed 1 Nov 2018

  • Nguyen, Phuc, Zhang, Xinyu, Halbower, Ann, Vu, Tam: Continuous and fine-grained breathing volume monitoring from afar using wireless signals. In: IEEE INFOCOM 2016 - the IEEE International Conference on Computer Communications, pp. 1–9 (2016)

  • Phan, D.H., Bonnet, S., Guillemaud, R., Castelli, E., Pham Thi, N.Y.: Estimation of respiratory waveform and heart rate using an accelerometer. In: Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pp. 4916–4919. IEEE (2008)

  • Ravichandran, Ruth, Saba1, Elliot, Chen, Ke-Yu, Goel, Mayank, Gupta, Sidhant, Patel, Shwetak N.: Wibreathe: Estimating respiration rate using wireless signals in natural settings in the home. IEEE PerCom (2015)

  • Rosales, Licet, Skubic, Marjorie, Heise, David, Devaney, Michael J., Schaumburg, Mark: Heartbeat detection from a hydraulic bed sensor using a clustering approach. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pp. 2383–2387. IEEE (2012)

  • Saha, S.K., Ghasempour, Y., Haider, M.K., Siddiqui, T., De Melo, P., Somanchi, N., Zakrajsek, L., Singh, A., Shyamsunder, R., Torres, O., et al.: X60: A programmable testbed for wideband 60 ghz wlans with phased arrays. Comput. Commun. 133, 77–88 (2019)

    Google Scholar 

  • Santhalingam, P.S., Hosain, A.A., Zhang, D., Pathak, P., Rangwala, H., Kushalnagar, R.: mmasl: Environment-independent asl gesture recognition using 60 ghz millimeter-wave signals. Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 4(1), 1–30 (2020)

    Google Scholar 

  • Šprager, S., Zazula, D.: Detection of heartbeat and respiration from optical interferometric signal by using wavelet transform. Comput. Methods Programs Biomed. 111(1), 41–51 (2013)

    Google Scholar 

  • Sun, Feng-Tso, Kuo, Cynthia, Cheng, Heng-Tze, Buthpitiya, Senaka, Collins, Patricia, Griss, Martin: Activity-aware mental stress detection using physiological sensors. In: International Conference on Mobile Computing, Applications, and Services, pp. 282–301. Springer (2010)

  • U.S. National Library of Medicine. Rapid Shallow Breathing (2018). https://medlineplus.gov/ency/article/007198.htm. Accessed 1 Nov 2018

  • Tse, D., Pramod, V.: Fundamentals of wireless communications. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  • Wang, Hao, Zhang, Daqing, Ma, Junyi, Wang, Yasha, Wang, Yuxiang, Wu, Dan, Gu, Tao, Xie, Bing: Human respiration detection with commodity wifi devices: Do user location and body orientation matter? ACM UbiComp (2016)

  • Wang, Song, Huang, Jingqi, Zhang, Xinyu, Kim, Hyoil, Dey, Sujit: X-array: Approximating omnidirectional millimeter-wave coverage using an array of phased arrays. In: Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, pp. 1–14 (2020)

  • Wang, Xuyu, Yang, Chao, Mao, Shiwen: Phasebeat: Exploiting csi phase data for vital sign monitoring with commodity wifi devices. In: Distributed Computing Systems (ICDCS), 2017 IEEE 37th International Conference on, pp. 1230–1239. IEEE (2017)

  • Wang, X., Yang, C., Mao, S.: Tensorbeat: Tensor decomposition for monitoring multiperson breathing beats with commodity wifi. ACM Trans. Intell. Syst. Technol. (TIST) 9(1), 8 (2017)

    Google Scholar 

  • Wei, Teng, Zhang, Xinyu: mtrack: High-precision passive tracking using millimeterwave radios. ACM MobiCom (2015)

  • Wu, Chenshu, Zhang, Feng, Wang, Beibei, Liu, K.J. Ray: mmtrack: Passive multi-person localization using commodity millimeter wave radio. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 2400–2409. IEEE (2020)

  • Wu, Ting, Rappaport, Theodore S., Collins, Christopher M.: The human body and millimeter-wave wireless communication systems: Interactions and implications 27(1), 2423–2429 (2015)

  • Yang, Zhicheng, Pathak, Parth H., Zeng, Yunze, Liran, Xixi, Mohapatra, Prasant: Monitoring vital signs using millimeterwave. ACM MobiHoc (2016)

  • Zeng, Y., Dan, W., Gao, R., Tao, G., Zhang, D.: Fullbreathe: Full human respiration detection exploiting complementarity of csi phase and amplitude of wifi signals. Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 2(3), 148 (2018)

    Google Scholar 

  • Zeng, Y., Wu, D., Xiong, J., Yi, E., Gao, R., Zhang, D.: FarSense. Pro. ACM Interact. Mobile, Wearable Ubiquitous Technol. 3(3), 1–26 (2019). https://doi.org/10.1145/3351279

    Article  Google Scholar 

  • Zhang, Jialiang, Zhang, Xinyu, Kulkarni, Pushkar, Ramanathan, Parameswaran: Openmili: A 60 ghz software radio platform with a reconfigurable phased-array antenna. In: Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, pp. 162–175 (2016)

  • Zhao, Mingmin, Adib, Fadel, Katabi, Dina: Emotion recognition using wireless signals. ACM MobiCom (2016)

  • Zhao, Renjie, Woodford, Timothy, Wei, Teng, Qian, Kun, Zhang, Xinyu: M-cube: A millimeter-wave massive mimo software radio. In: Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, pp. 1–14 (2020)

  • Zimetbaum, P.J., Josephson, M.E.: The evolving role of ambulatory arrhythmia monitoring in general clinical practice. Ann. Intern. Med. 130(10), 848–56 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenren Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Jia, Z., Xu, C. et al. Feasibility study of practical vital sign detection using millimeter-wave radios. CCF Trans. Pervasive Comp. Interact. 3, 436–452 (2021). https://doi.org/10.1007/s42486-021-00080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42486-021-00080-4

Keywords

Navigation