Skip to main content
Log in

αSetup-AMG: an adaptive-setup-based parallel AMG solver for sequence of sparse linear systems

  • Regular Paper
  • Published:
CCF Transactions on High Performance Computing Aims and scope Submit manuscript

Abstract

The algebraic multigrain (AMG) is one of the most frequently used algorithms for the solution of large-scale sparse linear systems in many realistic simulations of science and engineering applications. However, as the concurrency of supercomputers increasing, the AMG solver increasingly leads to poor parallel scalability due to its coarse-level construction in the setup phase. In this paper, to improve the parallel scalability of the traditional AMG to solve the sequence of sparse linear systems arising from PDE-based simulations, we propose a new AMG procedure called αSetup-AMG based on an adaptive setup strategy. The main idea behind αSetup-AMG is the introduction of a setup condition in the coarsening process so that the setup is constructed as it needed instead of constructing in advance via an independent phase in the traditional procedure. As a result, αSetup-AMG requires fewer setup cost and level numbers for the sequence of linear systems. The numerical results on thousands of cores for a radiation hydrodynamics simulation in the inertial confinement fusion (ICF) application show the significant improvement in the efficiency of the αSetup-AMG solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1

Similar content being viewed by others

References

  • An, H., Mo, Z., Xu, X., Liu, X.: On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations. J. Comput. Phys. 228(9), 3268–3287 (2009)

    MathSciNet  MATH  Google Scholar 

  • Baker, A., Falgout, R., Gamblin, T., Kolev, T., Schulz, M., Yang, U.: Scaling algebraic multigrid solvers: on the road to exascale. In: Bischof, C., Hegering, H.G., Nagel, W., Wittum, G. (eds.) Competence in High Performance Computing 2010, pp. 215–226. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-24025-6_18

    Chapter  Google Scholar 

  • Baker, A., Gamblin, T., Schulz, M., Yang, U.: Challenges of scaling Algebraic Multigrid across modern multicore architectures. In: Proceedings of the 2011 IEEE International Parallel & Distributed Processing Symposium (IPDPS'11), pp. 275–286 (2011). https://doi.org/10.1109/IPDPS.2011.35

  • Baker, A., Klawonn, A., Kolev, T., Lanser, M., Rheinbach, O., Yang, U.: Scalability of classical algebraic multigrid for elasticity to half a million parallel tasks. In: Bungartz, H.J., Neumann, P., Nagel, W. (eds.) Software for Exascale Computing-SPPEXA 2013–2015. Lecture Notes in Computational Science and Engineering, vol. 113, pp. 113–140. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-40528-5_6

    Chapter  Google Scholar 

  • Baldwin, C., Brown, P., Falgout, R., Graziani, F., Jones, J.: Iterative linear solvers in 2D radiation hydrodynamics code: methods and performance. J. Comput. Phys. 154, 1–40 (1999)

    MATH  Google Scholar 

  • Ballard, G., Siefert, C., Hu, J.: Reducing communication costs for sparse matrix multiplication with algebraic multigrid. SIAM J. Sci. Comput. 38(3), C203–C231 (2016)

    MathSciNet  MATH  Google Scholar 

  • Bell, N., Dalton, S., Olson, L.: Exposing fine-grained parallelism in algebraic multigrid methods. SIAM J. Sci. Comput. 34, C123–C152 (2012)

    MathSciNet  MATH  Google Scholar 

  • Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phy. 182, 418–477 (2002)

    MathSciNet  MATH  Google Scholar 

  • Bienz, A., Olson, L.: Reducing Network contention associated with parallel algebraic multigrid, SC14, 2 pages poster, New Orleans, USA (2014). http://sc14.supercomputing.org/sites/all/themes/sc14/files/archive/src_poster/poster_files/spost141s2-file2.pdf/. Accessed 5 May 2020

  • Bienz, A., Olson, L., Gropp, W.: Reducing parallel communication in algebraic multigrid with multi-step node aware communication, arXiv:1904.05838 (2019) https://arxiv.org/abs/1904.05838 Accessed 10 March 2020

  • Bienz, A., Falgout, R., Gropp, W., Olson, L., Schroder, J.: Reducing parallel communication in algebraic multigrid through sparsification. SIAM J. Sci. Comput. 38(5), S332–S357 (2016)

    MathSciNet  MATH  Google Scholar 

  • Brandt, A., McCormick, S., Ruge, J.: Algebraic multigrid for sparse matrix equations. In: Evans, D. (ed.) Sparsity and its application, pp. 257–284. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  • Falgout, R., Schroder, J.: Non-Galerkin coarse grids for algebraic multigrid. SIAM J. Sci. Comp. (36)3: C309-C334 (2014)

  • Fan, Z., Zhu, S., Pei, W., Ye, W., Li, M., Xu, X., Wu, J., Dai, Z., Wang, L.: Numerical inverstigation on the stabilization of the deceleration phase Rayleigh-Taylor instability due to alpha particle heating in ignition target. Euro. Phys. Lett. 99, 5003 (2012)

    Google Scholar 

  • Gahvari, H.: Improving the performance and scalability of algebraic multigrid solvers through applied performance modeling. Ph.D. thesis, University of Illinois at Urbana-Champaign (2014)

  • Gahvari, H., Baker, A., Schulz, M., Yang, U., Jordan, K., Gropp, W.: Modeling the performance of an algebraic multigrid cycle on HPC platforms. In Lowenthal, D., Supinski, B., McKee, S.(eds.) Proceedings of the 25th International Conference on Supercomputing, pp.172–181, ACM, Tucson, USA (2011)

  • Gu, T., Xu, X., Liu, X., An, H., Hang, X.: Iterative methods and preconditioning techniques. Information and computation science series no. 76. Science Press, Beijing (2015)

    Google Scholar 

  • Henson, V., Yang, U.: BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41, 155–177 (2002)

    MathSciNet  MATH  Google Scholar 

  • Hypre. https://computation.llnl.gov/projects/hypre. Accessed 10 March 2020. (2019)

  • JASMIN. https://www.caep-scns.ac.cn/JASMIN.php (2019) Accessed 10 March 2020.

  • Jin, C., Cai, X.-C.: A preconditioned recycling GMRES solver for stochastic Helmholtz problems. CiCP 6(2), 342–353 (2009)

    MathSciNet  MATH  Google Scholar 

  • JXPAMG. https://www.multigrid.org/solver/jxpamg.html (2019) Accessed 10 March 2020.

  • Lu, Y.: Paving the way for China exascale computing. CCF Trans High Perform Comput 1, 63–72 (2019)

    Google Scholar 

  • Meijerink, J., van der Vorst, H.: An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comput. 137, 148–162 (1977)

    MathSciNet  MATH  Google Scholar 

  • Mo, Z., Xu, X.: Relaxed RS0 or CLJP coarsening strategy for parallel AMG methods. Parallel Comput. 33(3), 174–185 (2007)

    MathSciNet  Google Scholar 

  • Mo, Z., Zhang, A., Cao, X., Liu, Q., Xu, X., An, H., Pei, W., Zhu, S.: JASMIN: a parallel software infrastructure for scientific computing. Front. Comput. Sci. China 4(4), 480–488 (2010)

    Google Scholar 

  • Parks, M., de Sturler, E., Mackey, G., Johnson, D., Maiti, S.: Recycling Krylov subspaces for sequences of linear systems. SIAM J. Sci. Comput. 28, 1651–1674 (2006)

    MathSciNet  MATH  Google Scholar 

  • Pei, W.: The construction of simulation algorithm for laser fusion. CiCP 2(2), 255–270 (2007)

    Google Scholar 

  • Pei, W., Zhu, S.: Scientific computing in laser fusion. Physics 38(8), 559–568 (2009)

    Google Scholar 

  • Ruge, J., Stüben, K.: Algebraic multigrid (AMG). In: McCormick, S. (ed.) Multigrid Methods, Frontiers in Applied Mathematics, vol. 3, pp. 73–130. SIAM, Philadelphia (1987)

    Google Scholar 

  • Saad, Y.: Iterative methods for sparse linear systems. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  • De Sterck, H., Yang, U., Heys, J.: Reducing complexity in parallel algebraic multigrid preconditioners. SIAM J. Mat. Anal. Appl. 27(4), 1019–1039 (2006)

    MathSciNet  MATH  Google Scholar 

  • Stüben, K.: Algebraic multigrid (AMG): an introduction with applications. In: Trottenberg, U., Oosterlee, C., Schuller, A. (eds.) Multigrid, pp. 413–532. Academic Press, New York (2001)

    MATH  Google Scholar 

  • Toselli, A., Widlund, O.: Domain decomposition methods: algorithms and theory. Spring, Berlin (2005)

    MATH  Google Scholar 

  • Trottenberg, U., Oosterlee, C., Schuller, A.: Multigrid. Academic Press, Singapore (2001)

    MATH  Google Scholar 

  • Vassilevski, P., Yang, U.: Reducing communication in algebraic multigrid using additive variants. Numer. Linear Algebra Appl. 21, 275–296 (2014)

    MathSciNet  MATH  Google Scholar 

  • Xu, X.: Parallel algebraic multigrid methods: state-of-the art and challenges for extreme-scale applications. J. Numer. Methods Comput. Appl. 40(4), 243–260 (2019)

    Google Scholar 

  • Xu, X., Mo, Z.: Scalability analysis for parallel algebraic multigrid algorithm. Chin. J. Comput. Phys. 24(4), 387–394 (2007)

    Google Scholar 

  • Xu, X., Mo, Z.: Algebraic interface based coarsening AMG preconditioner for multi-scale sparse matrices with applications to radiation hydrodynamics computation. Numer Linear Algebra Appl. 24(2), e2078 (2017). https://doi.org/10.1002/nla.2078

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, X., Mo, Z., An, H.: An algebraic two-level method for 2D–3T radiation diffusion equations. Chin. J. Comput. Phys. 26(1), 1–8 (2009)

    Google Scholar 

  • Xu, X., Mo, Z., Wu, L.: Analysis of communication-to computation based on aysmptotic size for iterative methods. Chin. J. Comput. 36(4), 782–789 (2013)

    Google Scholar 

  • Xu, X., Mo, Z., An, H.: An adaptive AMG preconditioning strategy for solving large-scale sparse linear systems. Sci. Sinica Inform. 46(10), 1411–1420 (2016)

    Google Scholar 

  • Yang, U.: Parallel algebraic multigrid methods - high performance preconditioners. In: Bruaset, A., Tveito, A. (eds.) Numerical Solution of PDEs on Parallel Computers. Lecture Notes in Computational Science and Engineering, vol. 51, pp. 209–236. Springer, Cham (2006). https://doi.org/10.1007/3-540-31619-1_6

    Chapter  Google Scholar 

  • Yue, X., Shu, S., Xu, X., Zhou, Z.: An adaptive combined preconditioner with applications in radiation diffusion equations. CiCP 18(5), 1313–1335 (2015)

    MathSciNet  MATH  Google Scholar 

  • Zhou, Z., Xu, X., Shu, S., Feng, C., Mo, Z.: An adaptive two-level preconditioner for 2D–3T radiation diffusion equations. Chin. J. Comput. Phys. 29(4), 475–548 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers of this paper for their constructive and helpful comments and suggestions. This work is supported by National Key R&D Program of China under Grant No. 2017YFB0202103, Science Challenge Project under Grant no. TZZT2016002, and National Nature Science Foundation of China under Grant Nos. 61370067 and 11971414.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowen Xu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Mo, Z., Yue, X. et al. αSetup-AMG: an adaptive-setup-based parallel AMG solver for sequence of sparse linear systems. CCF Trans. HPC 2, 98–110 (2020). https://doi.org/10.1007/s42514-020-00033-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42514-020-00033-w

Keywords

Navigation