Skip to main content
Log in

ID-Based Plaintext Checkable Signcryption with Equality Test in Healthcare Systems

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

This work is an extension of a research work presented at ICSIoT 2019. A suggested cryptographic primitive by Carnard et al. 2012 permits the checkability of a plaintext to a ciphertext to determine whether the ciphertext is an encryption of the plaintext. The proposed construction ensures a public plaintext query to a ciphertext. However, their proposed scheme is susceptible to data forgery and re-play attacks during data transmission. Therefore, we propose an improved scheme to resist data forgery and re-play attacks, and to achieve a simultaneous benefit of digital signature and public key encryption. Our proposed scheme achieves a desirable security property of EUF-CMA via the random oracle model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alornyo S, Evans A, Kingsford KM, Benjamin K, Xiong H, Michael A. ID-based outsourced plaintext checkable encryption in healthcare database. In: 2019 International Conference on Cyber Security and Internet of Things (ICSIoT), IEEE; 2019. pp. 48–53.

  2. Canard S, Georg F, Aline G, Fabien L. Plaintext-checkable encryption. Cryptographers’ track at the RSA conference. Berlin: Springer; 2012. p. 332–48.

    Google Scholar 

  3. Li F, Hu X, Yongjian L. A generic construction of identity-based signcryption. In: 2009 International Conference on Communications, Circuits and Systems, IEEE; 2009, pp. 291–5.

  4. Shamir A. Identity-based cryptosystems and signature schemes. Workshop on the theory and application of cryptographic techniques. Berlin: Springer; 1984. p. 47–53.

    Google Scholar 

  5. Bentahar K, Farshim P, Malone-Lee J, Smart NP. Generic constructions of identity-based and certificateless KEMs. J Cryptol. 2008;21(2):178–99.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen L, Cheng Z, Malone-Lee J, Smart NP. An efficient ID-KEM based on the Sakai-Kasahara key construction. IACR Cryptol. 2005. https://eprint.iacr.org/2005/224

  7. Kiltz E, David G. Direct chosen-ciphertext secure identity-based key encapsulation without random oracles. Australasian conference on information security and privacy. Berlin: Springer; 2006. p. 336–47.

    Chapter  Google Scholar 

  8. Zheng Y. Digital signcryption or how to achieve cost (signature and encryption) cost (signature)+ cost (encryption). Annual international cryptology conference. Berlin: Springer; 1997. p. 165–79.

    Google Scholar 

  9. Malone-Lee J. Identity-based signcryption. IACR Cryptol. 2002. https://eprint.iacr.org/2002/098

  10. Barreto PSLM, Benoît L, Noel M, Jean-Jacques Q. Efficient and provably-secure identity-based signatures and signcryption from bilinear maps. International conference on the theory and application of cryptology and information security. Berlin: Springer; 2005. p. 515–32.

    Google Scholar 

  11. Libert B, Jean-Jacques Q. A new identity based signcryption scheme from pairings. In: Proceedings 2003 IEEE Information Theory Workshop (Cat. No. 03EX674, IEEE; 2003, pp. 155–8

  12. Am Fiat, Adi S. How to prove yourself: practical solutions to identification and signature problems. Conference on the theory and application of cryptographic techniques. Berlin: Springer; 1986. p. 186–94.

    Google Scholar 

  13. Guillou LC, Jean-Jacques Q. A paradoxical indentity-based signature scheme resulting from zero-knowledge. Conference on the Theory and Application of Cryptography. New York: Springer; 1988. p. 216–31.

    Google Scholar 

  14. Yuen TH, Victor KW. Constant-size hierarchical identity-based signature/signcryption without random oracles. IACR Cryptol. 2005.

  15. Zheng Y, Imai H. How to construct efficient signcryption schemes on elliptic curves. Inform Process Lett. 1998;68(5):227–33.

    Article  MathSciNet  MATH  Google Scholar 

  16. Bao F, Robert HD. A signcryption scheme with signature directly verifiable by public key. International workshop on public key cryptography. Berlin: Springer; 1998. p. 55–9.

    Chapter  Google Scholar 

  17. Shin J-B, Kwangsu L, Kyungah S. New DSA-verifiable signcryption schemes. International conference on information security and cryptology. Berlin: Springer; 2002. p. 35–47.

    Google Scholar 

  18. Yum DH, Pil JL. New signcryption schemes based on KCDSA. International conference on information security and cryptology. Berlin: Springer; 2001. p. 305–17.

    Google Scholar 

  19. Li F, Muhammad KK. A survey of identity-based signcryption. IETE Tech Rev. 2011;28(3):265–72.

    Article  Google Scholar 

  20. Chow SSM, Siu-Ming Y, Lucas CKH, Chow KP. Efficient forward and provably secure ID-based signcryption scheme with public verifiability and public ciphertext authenticity. International conference on information security and cryptology. Berlin: Springer; 2003. p. 352–69.

    Google Scholar 

  21. Boyen X. Multipurpose identity-based signcryption. Annual international cryptology conference. Berlin, Heidelberg: Springer; 2003. p. 383–399.

    Google Scholar 

  22. Chen L, John M-L. Improved identity-based signcryption. International workshop on public key cryptography. Berlin: Springer; 2005. p. 362–79.

    Google Scholar 

  23. Yu Y, Yang B, Sun Y, Zhu S-L. Identity based signcryption scheme without random oracles. Comput Stand Interfaces. 2009a;31(1):56–62.

    Article  Google Scholar 

  24. Paterson KG, Jacob CNS. Efficient identity-based signatures secure in the standard model. Australasian conference on information security and privacy. Berlin: Springer; 2006. p. 207–22.

    Chapter  Google Scholar 

  25. Jin Z, Wen Q, Hongzhen D. An improved semantically-secure identity-based signcryption scheme in the standard model. Comput Electr Eng. 2010a;36(3):545–52.

    Article  MATH  Google Scholar 

  26. Li F, Liao Y, Qin Z. Analysis of an identity-based signcryption scheme in the standard model. IEICE Trans Fundam Electron Commun Comput Sci. 2011;94(1):268–9.

    Article  Google Scholar 

  27. Li F, Juntao G, Yupu H. ID-based threshold unsigncryption scheme from pairings. International conference on information security and cryptology. Berlin: Springer; 2005. p. 242–53.

    Chapter  Google Scholar 

  28. Duan S, Zhenfu C, Rongxing L. Robust ID-based threshold signcryption scheme from pairings. In: Proceedings of the 3rd international conference on Information security; 2004, pp. 33–7.

  29. Peng C, Xiang L. An identity-based threshold signcryption scheme with semantic security. International conference on computational and information science. Berlin: Springer; 2005. p. 173–9.

    Google Scholar 

  30. Li F, Yong Y. An efficient and provably secure ID-based threshold signcryption scheme. In: 2008 International Conference on Communications, Circuits and Systems, IEEE; 2008, pp. 488–92.

  31. Selvi SSD, Sree SV, Pandu CR, Neha J. Cryptanalysis of Li et al.’s identity-based threshold signcryption scheme. In: 2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, IEEE; 2008, pp. 127–32.

  32. Li F, Xin X, Yupu H. ID-based threshold proxy signcryption scheme from bilinear pairings. Int J Sec Netw. 2008;3(3):206–15.

    Article  MATH  Google Scholar 

  33. Wang M, Zhijing L. Identity based threshold proxy signcryption scheme. In: The Fifth International Conference on Computer and Information Technology (CIT’05), IEEE; 2005, pp. 695–9.

  34. Li F, Takagi T. Secure identity-based signcryption in the standard model. Math Comput Modell. 2013;57(11–12):2685–94.

    Article  MathSciNet  MATH  Google Scholar 

  35. Waters B. Efficient identity-based encryption without random oracles. Annual international conference on the theory and applications of cryptographic techniques. Berlin: Springer; 2005. p. 114–27.

    Google Scholar 

  36. Zhang B. Cryptanalysis of an identity based signcryption scheme without random oracles. J Comput Inform Syst. 2010;6(6):1923–31.

    Google Scholar 

  37. Zhu G, Xiong H, Qin Z. Fully secure identity based key-insulated signcryption in the standard model. Wirel Pers Commun. 2014a;79(2):1401–16.

    Article  Google Scholar 

  38. Chen J, Chen K, Wang Y, Xiangxue L, Yu L, Wan Z. Identity-based key-insulated signcryption. Informatica. 2012;23(1):27–45.

    Article  MathSciNet  MATH  Google Scholar 

  39. Hassan A, Eltayieb N, Elhabob R, Li F. An efficient certificateless user authentication and key exchange protocol for client-server environment. J Ambient Intell Humaniz Comput. 2018;9(6):1713–27.

    Article  Google Scholar 

  40. Ma S, Yi M, Susilo W. A Generic Scheme of plaintext-checkable database encryption. Inform Sci. 2018;429:88–101.

    Article  MathSciNet  MATH  Google Scholar 

  41. Boneh D, Matt F. Identity-based encryption from the Weil pairing. Annual international cryptology conference. Berlin: Springer; 2001. p. 213–29.

    Google Scholar 

  42. Boneh D, Giovanni DC, Rafail O, Giuseppe P. Public key encryption with keyword search. International conference on the theory and applications of cryptographic techniques. Berlin: Springer; 2004. p. 506–22.

    Google Scholar 

  43. Fang L, Susilo W, Ge C, Wang J. Public key encryption with keyword search secure against keyword guessing attacks without random oracle. Inform Sci. 2013;238:221–41.

    Article  MathSciNet  MATH  Google Scholar 

  44. Shi J, Junzuo L, Yingjiu L, Robert HD, Jian W. Authorized keyword search on encrypted data. European symposium on research in computer security. Cham: Springer; 2014. p. 419–35.

    Google Scholar 

  45. Yang G, Chik HT, Qiong H, Duncan SW. Probabilistic public key encryption with equality test. Cryptographers’ track at the RSA conference. Berlin: Springer; 2010. p. 119–31.

    Google Scholar 

  46. Lee HT, Huaxiong W, Kai Z. Security analysis and modification of ID-based encryption with equality test from ACISP 2017. Australasian conference on information security and privacy. Cham: Springer; 2018. p. 780–86.

    Chapter  MATH  Google Scholar 

  47. Lipmaa H. Verifiable homomorphic oblivious transfer and private equality test. International conference on the theory and application of cryptology and information security. Berlin: Springer; 2003. p. 416–33.

    MATH  Google Scholar 

  48. Tang Q. Public key encryption schemes supporting equality test with authorisation of different granularity. Int J Appl Cryptogr. 2012;2(4):304–21.

    Article  MathSciNet  MATH  Google Scholar 

  49. Wu L, Zhang Y, Choo K-KR, He D. Efficient identity-based encryption scheme with equality test in smart city. IEEE Trans Sustain Comput. 2017;3(1):44–55.

    Article  Google Scholar 

  50. Wu T, Sha M, Yi M, Shengke Z. ID-based encryption with equality test against insider attack. Australasian conference on information security and privacy. Cham: Springer; 2017. p. 168–83.

    Chapter  Google Scholar 

  51. Chen R, Yi M, Guomin Y, Fuchun G, Xiaofen W. A new general framework for secure public key encryption with keyword search. Australasian conference on information security and privacy. Cham: Springer; 2015. p. 59–76.

    Chapter  Google Scholar 

  52. Garg, S, Craig G, Amit S, Brent W (2013) Witness encryption and its applications. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing; 2013, pp. 467–76.

  53. Lynn B. The stanford pairing based crypto library. Privacy preservation scheme for multicast communications in smart buildings of the smart grid. 2013.

  54. Xiong H, Mei Q, Zhao Y. Efficient and provably secure certificateless parallel key-insulated signature without pairing for IIoT environments. IEEE Syst J. 2019;14(1):310–20.

    Article  Google Scholar 

  55. Yu Y, Yang B, Sun Y, Zhu S-L. Identity based signcryption scheme without random oracles. Comput Stand Interfaces. 2009b;31(1):56–62.

    Article  Google Scholar 

  56. Jin Z, Wen Q, Hongzhen D. An improved semantically-secure identity-based signcryption scheme in the standard model. Comput Electr Eng. 2010b;36(3):545–52.

    Article  MATH  Google Scholar 

  57. Zhu G, Xiong H, Qin Z. Fully secure identity based key-insulated signcryption in the standard model. Wirel Pers Commun. 2014b;79(2):1401–416.

    Article  Google Scholar 

  58. Ma S. Identity-based encryption with outsourced equality test in cloud computing. Inform Sci. 2016;328:389–402.

    Article  MATH  Google Scholar 

  59. Alornyo S, Mensah AE, Abbam AO. Identity-based public key cryptographic primitive with delegated equality test against insider attack in cloud computing. Int J Netw Sec. 2020;22(5):743–51.

    Google Scholar 

  60. Alornyo S, Kingsford KM, Abraham T-H, Xiong H. Mobile Money wallet security against insider attack using ID-based cryptographic primitive with equality test. In: 2019 International Conference on Cyber Security and Internet of Things (ICSIoT), IEEE; 2019, pp. 82–7

  61. Alornyo S, Zhao Y, Zhu G, Xiong H. Identity based key-insulated encryption with outsourced equality test. IJ Netw Sec. 2020;22(2):257–64.

    Google Scholar 

Download references

Acknowledgements

We would like to use this opportunity to thank the anonymous reviewers for their contributions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Alornyo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This paper does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alornyo, S., Mohammed, M.A., Anibrika, B.S. et al. ID-Based Plaintext Checkable Signcryption with Equality Test in Healthcare Systems. SN COMPUT. SCI. 2, 52 (2021). https://doi.org/10.1007/s42979-020-00436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-020-00436-0

Keywords

Navigation