Skip to main content
Log in

Visualizing High-Dimensional Functions with Dense Maps

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Multivariate functions have a central place in the development of techniques present many domains, such as machine learning and optimization research. However, only a few visual techniques exist to help users understand such multivariate problems, especially in the case of functions that depend on complex algorithms and variable constraints. In this paper, we propose a technique that enables the visualization of high-dimensional surfaces defined by such multivariate functions using a two-dimensional pixel map. We demonstrate two variants of it, OptMap, focused on optimization problems, and RegSurf, focused on regression problems in machine learning. Both our techniques are simple to implement, computationally efficient, and generic with respect to the nature of the high-dimensional data they address. We show how the two techniques can be used to visually explore a wide variety of optimization and regression problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Code Availability

Our implementation, plus all codes used in our experiments, are publicly available at github.com/mespadoto/optmap.

References

  1. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in python. JMLR. 2011;12:2825–30.

    MathSciNet  MATH  Google Scholar 

  2. Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems (NIPS). 2012. p. 1097–1105.

  3. Brooke A, Kendrick D, Meeraus A, Raman R, America U. The general algebraic modeling system. GAMS Development Corporation. 1998. p. 1050.

  4. Fourer R, Gay DM, Kernighan BW. A modeling language for mathematical programming. Thomson: AMPL; 2003.

    MATH  Google Scholar 

  5. Dunning I, Huchette J, Lubin M. JuMP: a modeling language for mathematical optimization. SIAM Rev. 2017;59(2):295–320.

    MathSciNet  MATH  Google Scholar 

  6. Liu S, Maljovec D, Wang B, Bremer P-T, Pascucci V. Visualizing high-dimensional data: advances in the past decade. IEEE TVCG. 2015;23(3):1249–68.

    Google Scholar 

  7. Espadoto M, Rodrigues FCM, Hirata NS, Telea AC. OptMap: using dense maps for visualizing multidimensional optimization problems. In: VISIGRAPP (3: IVAPP). 2021. p. 123–132.

  8. Guenin B, Könemann J, Tuncel L. A gentle introduction to optimization. UK: Cambridge University Press; 2014.

    MATH  Google Scholar 

  9. Dantzig GB. Origins of the simplex method. In: A history of scientific computing. 1990. p. 141–151.

  10. Kantorovich LV. Mathematical methods of organizing and planning production. Manage Sci. 1960;6(4):366–422.

    MathSciNet  MATH  Google Scholar 

  11. Forrest J, Vigerske S, Ralphs T, Hafer L, jpfasano Santos HG, Saltzman M, h-i-gassmann Kristjansson B, King A. coin-or/Clp 2020.

  12. Forrest J, Vigerske S, Santos HG, Ralphs T, Hafer L, Kristjansson B, jpfasano Straver E, Lubin M, rlougee jpgoncal1 h-i-gassmann, Saltzman M. coin-or/Cbc 2020.

  13. Makhorin A. GLPK: GNU Linear Programming Kit. 2008. https://www.gnu.org/software/glpk/glpk.html.

  14. Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7(4):308–13.

    MathSciNet  MATH  Google Scholar 

  15. Liu DC, Nocedal J. On the limited memory BFGS method for large scale optimization. Math Program. 1989;45(1–3):503–28.

    MathSciNet  MATH  Google Scholar 

  16. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. USA: Routledge; 2017.

    MATH  Google Scholar 

  17. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

    MATH  Google Scholar 

  18. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;1189–1232.

  19. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems. 2017. p. 4768–4777.

  20. Ribeiro MT, Singh S, Guestrin C. Why should I trust you?: explaining the predictions of any classifier. In: Proc. ACM SIGMOD KDD. 2016. p. 1135–1144.

  21. Rodrigues F, Espadoto M, Hirata R, Telea AC. Constructing and visualizing high-quality classifier decision boundary maps. Information. 2019;10(9):280.

    Google Scholar 

  22. Garcia R, Telea A, da Silva B, Torresen J, Comba J. A task-and-technique centered survey on visual analytics for deep learning model engineering. Comput Gr. 2018;77:30–49.

    Google Scholar 

  23. Buja A, Cook D, Swayne DF. Interactive high-dimensional data visualization. J Comput Gr Stat. 1996;5(1):78–99.

    Google Scholar 

  24. Bertini E, Tatu A, Keim D. Quality metrics in high-dimensional data visualization: an overview and systematization. IEEE TVCG. 2011;17(12):2203–12.

    Google Scholar 

  25. Rao R, Card SK. The table lens: merging graphical and symbolic representations in an interactive focus+context visualization for tabular information. In: Proc. ACM SIGCHI. 1994. p. 318–322.

  26. Telea AC. Combining extended table lens and treemap techniques for visualizing tabular data. In: Proc. EuroVis. 2006. p. 120–127.

  27. Inselberg A, Dimsdale B. Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proc. IEEE visualization. 1990. p. 361–378.

  28. Yates A, Webb A, Sharpnack M, Chamberlin H, Huang K, Machiraju R. Visualizing multidimensional data with glyph SPLOMs. Comput Gr Forum. 2014;33(3):301–10.

    Google Scholar 

  29. van Wijk JJ, van Liere R. Hyperslice. In: Proc. visualization. IEEE. 1993. p. 119–125.

  30. Piringer H, Berger W, Krasser J. HyperMoVal: interactive visual validation of regression models for real-time simulation. Comput Gr Forum. 2010;29(10):983–92.

    Google Scholar 

  31. Crawfis PBRWR. Isosurfacing in higher dimensions. In: Proc. IEEE visualization. 2010.

  32. Gerber S, Bremer P-T, Pascucci V, Whitaker R. Visual exploration of high dimensional scalar functions. IEEE TVCG. 2010;16(6):1271–80.

    Google Scholar 

  33. Wicklin R. Visualize the feasible region for a constrained optimization. SAS. 2018.

  34. Espadoto M, Martins RM, Kerren A, Hirata NS, Telea AC. Towards a quantitative survey of dimension reduction techniques. IEEE TVCG. 2019;27(3):2153–73.

    Google Scholar 

  35. Jolliffe IT. Principal component analysis and factor analysis. In: Principal component analysis. Berlin: Springer. 1986. p. 115–128.

  36. Torgerson WS. Theory and methods of scaling. Oxford: Wiley; 1958.

    Google Scholar 

  37. Tenenbaum JB, Silva VD, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science. 2000;290(5500):2319–23.

    Google Scholar 

  38. Roweis ST, Saul LLK. Nonlinear dimensionality reduction by locally linear embedding. Science. 2000;290(5500):2323–6.

    Google Scholar 

  39. McInnes L, Healy J. UMAP: uniform manifold approximation and projection for dimension reduction (2018). arXiv:1802.03426v1 [stat.ML].

  40. Joia P, Coimbra D, Cuminato JA, Paulovich FV, Nonato LG. Local affine multidimensional projection. IEEE TVCG. 2011;17(12):2563–71.

    Google Scholar 

  41. Paulovich FV, Nonato LG, Minghim R, Levkowitz H. Least square projection: a fast high-precision multidimensional projection technique and its application to document mapping. IEEE TVCG. 2008;14(3):564–75.

    Google Scholar 

  42. Maaten LVD, Hinton G. Visualizing data using t-SNE. JMLR. 2008;9:2579–605.

    MATH  Google Scholar 

  43. Nonato L, Aupetit M. Multidimensional projection for visual analytics: linking techniques with distortions, tasks, and layout enrichment. IEEE TVCG. 2018.

  44. Amorim E, Brazil EV, Daniels J, Joia P, Nonato LG, Sousa MC. iLAMP: exploring high-dimensional spacing through backward multidimensional projection. In: Proc. IEEE VAST. 2012. p. 53–62.

  45. Espadoto M, Rodrigues FCM, Hirata NST, Hirata Jr, R, Telea AC. Deep learning inverse multidimensional projections. In: Proc. EuroVA. 2019.

  46. Espadoto M, Hirata N, Telea A. Deep learning multidimensional projections. Inf Vis. 2020.

  47. Hunter JD. Matplotlib: a 2d graphics environment. Comput Sci Eng. 2007;9(3):90–5.

    Google Scholar 

  48. Rosenbrock H. An automatic method for finding the greatest or least value of a function. Comput J. 1960;3(3):175–84.

    MathSciNet  Google Scholar 

  49. Rastrigin LA. Systems of extremal control. Nauka. 1974.

  50. Styblinski M, Tang T-S. Experiments in nonconvex optimization: stochastic approximation with function smoothing and simulated annealing. Neural Netw. 1990;3(4):467–83.

    Google Scholar 

  51. Hager WW, Zhang H. Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent. ACM Trans Math Softw. 2006;32(1):113–37.

    MATH  Google Scholar 

  52. Wächter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program. 2006;106(1):25–57.

    MathSciNet  MATH  Google Scholar 

  53. Vito SD, Massera E, Piga M, Martinotto L, Francia GD. On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sens Actuators B Chem. 2008;129(2):750–757. https://archive.ics.uci.edu/ml/datasets/Air+Quality

  54. Henderson HV, Velleman PF. Building multiple regression models interactively. Biometrics. 1981;391–411.

  55. Harrison D Jr, Rubinfeld DL. Hedonic housing prices and the demand for clean air. J Environ Econ Manag. 1978;5(1):81–102.

    MATH  Google Scholar 

  56. Yeh I-C. Modeling of strength of high-performance concrete using artificial neural networks. Cem Concr Res. 1998;28(12):1797–808.

    Google Scholar 

  57. Hamidieh K. A data-driven statistical model for predicting the critical temperature of a superconductor. Comput Mater Sci. 2018;154:346–54.

    Google Scholar 

  58. Ferreira R, Affonso C, Sassi R. Combination of artificial intelligence techniques for prediction the behavior of urban vehicular traffic in the city of são paulo. In: 10th Brazilian congress on computational intelligence (CBIC)-Fortaleza, Ceara, Brazil. 2011. p. 1–7.

  59. Cortez P, Cerdeira A, Almeida F, Matos T, Reis J. Modeling wine preferences by data mining from physicochemical properties. Decis Support Syst. 2009;47(4):547–53.

    Google Scholar 

  60. Martins R, Coimbra D, Minghim R, Telea A. Visual analysis of dimensionality reduction quality for parameterized projections. Comput Gr. 2014;41:26–42.

    Google Scholar 

  61. Silva Rd, Rauber P, Martins R, Minghim R, Telea AC. Attribute-based visual explanation of multidimensional projections. In: Proc. EuroVA. 2015.

  62. van Driel D, Zhai X, Tian Z, Telea A. Enhanced attribute-based explanations of multidimensional projections. In: Proc. EuroVA. 2020.

  63. Tian Z, Zhai X, van Driel D, van Steenpaal G, Espadoto M, Telea A. Using multiple attribute-based explanations of multidimensional projections to explore high-dimensional data. Comput Gr. 2021;98:93–104.

    Google Scholar 

  64. Rahaman M, Li C, Yao Y, Kulwa F, Rahman MA, Wang Q, Qi S, Kong F, Zhu X, Zhao X. Identification of COVID-19 samples from chest X-ray images using deep learning: a comparison of transfer learning approaches. J Xray Sci Technol. 2020;28(5):821–39.

    Google Scholar 

  65. Chen H, Li C, Wang G, Li X, Rahaman M, Sun H, Hu W, Li Y, Liu W, Sun C, Ai S, Grzegorzek M. GasHis-transformer: a multi-scale visual transformer approach for gastric histopathological image detection. Pattern Recogn. 2022;130:108827.

    Google Scholar 

  66. Liu W, Li C, Xu N, Jiang T, Rahaman M, Sun H, Wu X, Hu W, Chen H, Sun C, Yao Y, Grzegorzek M. CVM-Cervix: a hybrid cervical Pap-smear image classification framework using CNN, visual transformer and multilayer perceptron. Pattern Recogn. 2022;130:108829.

    Google Scholar 

  67. Zhang J, Li C, Kosov S, Grzegorzek M, Shirahamad K, Jiang T, Sun C, Li Z, Li H. LCU-Net: a novel low-cost U-Net for environmental microorganism image segmentation. Pattern Recogn. 2021;115:107885.

    Google Scholar 

  68. Rahaman M, Li C, Yao Y, Kulwa F, Wu X, Li X, Wang Q. DeepCervix: a deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques. Comput Biol Med. 2021;136:104649.

    Google Scholar 

  69. Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: a fresh approach to numerical computing. SIAM Rev. 2017;59(1):65–98.

    MathSciNet  MATH  Google Scholar 

  70. Mogensen PK, Riseth AN. Optim: a mathematical optimization package for Julia. J Open Sour Softw. 2018;3(24):615.

    Google Scholar 

  71. Blaom AD, Kiraly F, Lienart T, Simillides Y, Arenas D, Vollmer SJ. MLJ: a Julia package for composable machine learning. 2020. arXiv preprint arXiv:2007.12285.

Download references

Funding

This study was financed in part by FAPESP under Grant Nos. 2015/22308-2, 2017/25835-9, and 2020/13275-1, and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Mateus Espadoto.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Computer Vision, Imaging and Computer Graphics Theory and Applications” guest edited by Jose Braz, A. Augusto Sousa, Alexis Paljic, Christophe Hurter, and Giovanni Maria Farinella.

Appendix 1: Implementation details

Appendix 1: Implementation details

Table 8 Software used for the OptMap and RegSurf implementation

We implemented OptMap and RegSurf in Julia  [69] using the open-source software libraries in Table 8. The optimization examples (“OptMap: Test via High‑Dimensional Functions”, OptMap: Solvers for Unconstrained Problems and “OptMap Performance”) were implemented using Optim  [70] for the unconstrained problems, and JuMP  [5] for the constrained problems, using the solvers Clp  [11], Cbc  [12], GLPK  [13], and Ipopt  [52]. The regression examples (“RegSurf: Real‑World Datasets” and “RegSurf: Visualizing Overfitting”) were implemented using the MLJ library  [71]. Our implementation, plus all code used in our experiments, are publicly available at github.com/mespadoto/optmap.

The scalability experiments discussed in “OptMap Performance” and “RegSurf Performance” were executed, respectively, on a 4-core Intel Xeon E3-1240 v6 at 3.7 GHz with 64 GB RAM, and on a dual 16-core Intel Xeon Silver 4216 at 2.1 GHz with 256 GB RAM.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espadoto, M., Rodrigues, F.C.M., Hirata, N.S.T. et al. Visualizing High-Dimensional Functions with Dense Maps. SN COMPUT. SCI. 4, 230 (2023). https://doi.org/10.1007/s42979-022-01664-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-022-01664-2

Keywords

Navigation