Skip to main content

Flow-FISH Using Nucleic Acid Mimic Probes for the Detection of Bacteria

  • Protocol
  • First Online:
Fluorescence In-Situ Hybridization (FISH) for Microbial Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2246))

Abstract

Flow-Fluorescence in situ hybridization (Flow-FISH) enables multiparametric high-throughput detection of target nucleic acid sequences at the single cell-level, allowing an accurate quantification of different cell populations by using a combination of flow cytometry and fluorescent in situ hybridization (FISH). In this chapter, a flow-FISH protocol is described with labeled nucleic acid mimics (NAMs) (e.g. LNA/2′OMe and PNA) acting as the reporter molecules. This protocol allows for the specific detection of bacterial cells. Hence, this protocol can be carried out with minor adjustments, in order to simultaneously detect different species of bacteria in different types of clinical, food, or environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363. https://doi.org/10.1126/science.2466341

    Article  CAS  PubMed  Google Scholar 

  2. Amann RI, Binder BJ, Olson RJ et al (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Manz W, Amann R, Ludwig W et al (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600. https://doi.org/10.1016/S0723-2020(11)80121-9

    Article  Google Scholar 

  4. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    Google Scholar 

  5. McFadden GI (1995) In situ hybridization. In: Galbraith DW, Bohnert HJ, Bourq DP (eds) Methods in cell biology. Academic Press Inc., San Diego, USA. https://doi.org/10.1016/S0091-679X(08)61453-3

    Chapter  Google Scholar 

  6. Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60:641–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bertin B, Broux O, Van Hoegaerden M (1990) Flow cytometric detection of yeast by in situ hybridization with a fluorescent ribosomal RNA probe. J Microbiol Methods 12:1–12. https://doi.org/10.1016/0167-7012(90)90002-N

  8. Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization with rRNA targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136–143. https://doi.org/10.1002/cyto.990140205

    Article  CAS  PubMed  Google Scholar 

  9. Pernthaler A, Amann R (2004) Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl Environ Microbiol 70:5426–5433. https://doi.org/10.1128/AEM.70.9.5426-5433.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robertson KL, Thach DC (2009) LNA flow–FISH: a flow cytometry–fluorescence in situ hybridization method to detect messenger RNA using locked nucleic acid probes. Anal Biochem 390:109–114. https://doi.org/10.1016/j.ab.2009.04.026

    Article  CAS  PubMed  Google Scholar 

  11. Wallner G, Erhart R, Amann R (1995) Flow cytometric analysis of activated sludge with ribosomal RNA targeted probes. Appl Environ Microbiol 61:1859–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rice J, Sleigh MA, Burkill PH et al (1997) Flow cytometric analysis of characteristics of hybridization of species-specific fluorescent oligonucleotide probes to rRNA of marine nanoflagellates. Appl Environ Microbiol 63:938–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Connil N, Dousset X, Onno B et al (1998) Enumeration of Carnobacterium divergens V41, Carnobacterium piscicola V1, and Lactobacillus brevis LB62 by in situ hybridization–flow cytometry. Lett Appl Microbiol 27:302–306

    CAS  PubMed  Google Scholar 

  14. Friedrich U, Lenke J (2006) Improved enumeration of lactic acid bacteria in mesophilic dairy starter cultures by using multiplex quantitative real-time PCR and flow cytometry-fluorescence in situ hybridization. Appl Environ Microbiol 72:4163–4171. https://doi.org/10.1128/AEM.02283-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nettmann E, Fröhling A, Heeg K et al (2013) Development of a flow-fluorescence in situ hybridization protocol for the analysis of microbial communities in anaerobic fermentation liquor. BMC Microbiol 13:278. https://doi.org/10.1186/1471-2180-13-278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Azevedo AS, Sousa IM, Fernandes RM et al (2019) Optimizing locked nucleic acid/2′-O-methyl-RNA fluorescence in situ hybridization (LNA/2′OMe-FISH) procedure for bacterial detection. PLoS One 14(5):e0217689. https://doi.org/10.1371/journal.pone.0217689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hartmann H, Stender H, Schäfer A et al (2005) Rapid identification of Staphylococcus aureus in blood cultures by a combination of fluorescence in situ hybridization using peptide nucleic acid probes and flow cytometry. J Clin Microbiol 43:4855–4857. https://doi.org/10.1128/JCM.43.9.4855-4857.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Azevedo NF, Jardim T, Almeida C et al (2011) Application of flow cytometry for the identification of Staphylococcus epidermidis by peptide nucleic acid fluorescence in situ hybridization (PNA FISH) in blood samples. Antonie Van Leeuwenhoek 100:463–470. https://doi.org/10.1007/s10482-011-9595-9

  19. Roederer M (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 45:194–205

    Article  CAS  PubMed  Google Scholar 

  20. Morrison LE, Ramakrishnan R, Ruffalo TM et al (2003) Labeling fluorescence in situ hybridization probes for genomic targets. In: Yao-Shan (ed) Molecular cytogenetics: protocols and applications. Humana Press, Totowa, NJ

    Google Scholar 

  21. Santos S, Guimarães N, Madureira P et al (2014) Optimization of a peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method for the detection of bacteria and disclosure of a formamide effect. J Biotechnol 187:16–24. https://doi.org/10.1016/j.jbiotec.2014.06.023

    Article  CAS  PubMed  Google Scholar 

  22. Matthiesen SH, Hansen CM (2012) Fast and non-toxic in situ hybridization without blocking of repetitive sequences. PLoS One 7:e40675. https://doi.org/10.1371/journal.pone.0040675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fontenete S, Barros J, Madureira P et al (2015) Mismatch discrimination in fluorescent in situ hybridization using different types of nucleic acids. Appl Microbiol Biotechnol 99:3961–3969. https://doi.org/10.1007/s00253-015-6389-4

    Article  CAS  PubMed  Google Scholar 

  24. Rocha R, Sousa JM, Cerqueira L et al (2019) Development and application of peptide nucleic acid fluorescence in situ hybridization for the specific detection of Listeria monocytogenes. Food Microbiol 80:1–8. https://doi.org/10.1016/j.fm.2018.12.009

    Article  CAS  PubMed  Google Scholar 

  25. Strauss WM (2002) PNA-FISH. In: Rautenstrauss BW, Liehr T (eds) FISH technology. Springer lab manuals. Springer, Berlin, Heidelberg

    Google Scholar 

  26. Almeida C, Azevedo NF, Santos S et al (2011) Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). PLoS One 6:e14786. https://doi.org/10.1371/journal.pone.0014786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Azevedo AS, Almeida C, Pereira B et al (2015) Detection and discrimination of biofilm populations using locked nucleic acid/2′-O-methyl-RNA fluorescence in situ hybridization (LNA/2′OMe-FISH). Biochem Eng J 104:64–73. https://doi.org/10.1016/j.bej.2015.04.024

    Article  CAS  Google Scholar 

  28. Fontenete S, Carvalho D, Guimarães N et al (2016) Application of locked nucleic acid-based probes in fluorescence in situ hybridization. Appl Microbiol Biotechnol 100:5897–5906. https://doi.org/10.1007/s00253-016-7429-4

    Article  CAS  PubMed  Google Scholar 

  29. Stender H, Lund K, Petersen KH et al (1999) Fluorescence in situ hybridization assay using peptide nucleic acid probes for differentiation between tuberculous and nontuberculous mycobacterium species in smears of mycobacterium cultures. J Clin Microbiol 37:2760–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moter A, Göbel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112. https://doi.org/10.1016/S0167-7012(00)00152-4

    Article  CAS  PubMed  Google Scholar 

  31. Müller S, Nebe-von-Caron G (2010) Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev 34:554–587. https://doi.org/10.1111/j.1574-6976.2010.00214.x

    Article  CAS  PubMed  Google Scholar 

  32. Lee JA, Spidlen J, Boyce K et al (2008) MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry 73:926–930. https://doi.org/10.1002/cyto.a.20623

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nebe-von-Caron G (2009) Standardization in microbial cytometry. Cytometry 75:86–89. https://doi.org/10.1002/cyto.a.20696

    Article  PubMed  Google Scholar 

  34. Barsky LW, Black M, Cochran M et al (2016) International Society for Advancement of Cytometry (ISAC) flow cytometry shared resource laboratory (SRL) best practices. Cytometry 89A:1017–1030. https://doi.org/10.1002/cyto.a.23016

    Article  Google Scholar 

  35. Wang L, Hoffman RA (2017) Standardization, calibration, and control in flow cytometry. Curr Protoc Cytom 79:1.3.1–1.3.27. https://doi.org/10.1002/cpcy.14

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by (a) Base Funding—UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy—LEPABE—funded by national funds through the FCT/MCTES (PIDDAC); (b) Projects POCI-01-0145-FEDER-016678 (Coded-FISH), POCI-01-0145-FEDER-03043 (CLASInVivo), and POCI-01-0145-FEDER- 028659 (NAM4toxins), funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI), and by national funds (PIDDAC) through FCT/MCTES; and (c) BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreia S. Azevedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Azevedo, A.S., Rocha, R., Dias, N. (2021). Flow-FISH Using Nucleic Acid Mimic Probes for the Detection of Bacteria. In: Azevedo, N.F., Almeida, C. (eds) Fluorescence In-Situ Hybridization (FISH) for Microbial Cells. Methods in Molecular Biology, vol 2246. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1115-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1115-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1114-2

  • Online ISBN: 978-1-0716-1115-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics