Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2246))

Abstract

FISH has gained an irreplaceable place in microbiology because of its ability to detect and locate a microorganism, or a group of organisms, within complex samples. However, FISH role has evolved drastically in the last few decades and its value has been boosted by several advances in signal intensity, imaging acquisitions, automation, method robustness, and, thus, versatility. This has resulted in a range of FISH variants that gave researchers the ability to access a variety of other valuable information such as complex population composition, metabolic activity, gene detection/quantification, or subcellular location of genetic elements. In this chapter, we will review the more relevant FISH variants, their intended use, and how they address particular challenges of classical FISH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levsky JM, Singer RH (2003) Fluorescence in situ hybridization: past, present and future. J Cell Sci 116(Pt 14):2833–2838. https://doi.org/10.1242/jcs.00633

    Article  CAS  PubMed  Google Scholar 

  2. Drescher J, Schlafer S, Schaudinn C, Riep B, Neumann K, Friedmann A, Petrich A, Gobel UB, Moter A (2010) Molecular epidemiology and spatial distribution of Selenomonas spp. in subgingival biofilms. Eur J Oral Sci 118(5):466–474. https://doi.org/10.1111/j.1600-0722.2010.00765.x

    Article  CAS  PubMed  Google Scholar 

  3. Frickmann H, Zautner AE, Moter A, Kikhney J, Hagen RM, Stender H, Poppert S (2017) Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol 43(3):263–293. https://doi.org/10.3109/1040841X.2016.1169990

    Article  CAS  PubMed  Google Scholar 

  4. Schonhuber W, Fuchs B, Juretschko S, Amann R (1997) Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signal amplification. Appl Environ Microbiol 63(8):3268–3273

    Article  CAS  Google Scholar 

  5. Bobrow MN, Harris TD, Shaughnessy KJ, Litt GJ (1989) Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J Immunol Methods 125(1–2):279–285

    Article  CAS  Google Scholar 

  6. Bobrow MN, Shaughnessy KJ, Litt GJ (1991) Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays. J Immunol Methods 137(1):103–112

    Article  CAS  Google Scholar 

  7. Lebaron P, Catala P, Fajon C, Joux F, Baudart J, Bernard L (1997) A new sensitive, whole-cell hybridization technique for detection of bacteria involving a biotinylated oligonucleotide probe targeting rRNA and tyramide signal amplification. Appl Environ Microbiol 63(8):3274–3278

    Article  CAS  Google Scholar 

  8. Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68(6):3094–3101. https://doi.org/10.1128/aem.68.6.3094-3101.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pavlekovic M, Schmid MC, Schmider-Poignee N, Spring S, Pilhofer M, Gaul T, Fiandaca M, Loffler FE, Jetten M, Schleifer KH, Lee NM (2009) Optimization of three FISH procedures for in situ detection of anaerobic ammonium oxidizing bacteria in biological wastewater treatment. J Microbiol Methods 78(2):119–126. https://doi.org/10.1016/j.mimet.2009.04.003

    Article  CAS  PubMed  Google Scholar 

  10. Ishii K, Mussmann M, MacGregor BJ, Amann R (2004) An improved fluorescence in situ hybridization protocol for the identification of bacteria and archaea in marine sediments. FEMS Microbiol Ecol 50(3):203–212. https://doi.org/10.1016/j.femsec.2004.06.015

    Article  CAS  PubMed  Google Scholar 

  11. Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R (2003) An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol 69(5):2928–2935. https://doi.org/10.1128/aem.69.5.2928-2935.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moraru C, Lam P, Fuchs BM, Kuypers MM, Amann R (2010) GeneFISH—an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environ Microbiol 12(11):3057–3073. https://doi.org/10.1111/j.1462-2920.2010.02281.x

    Article  CAS  PubMed  Google Scholar 

  13. Tanke HJ, Vrolijk J, Raap AK (1994) Image analysis of fish stained specimens - a new diagnostic tool in genetics and oncology. In: Proceedings - annual meeting, Microscopy Society of America, pp 78–79

    Google Scholar 

  14. Barrero-Canosa J, Moraru C, Zeugner L, Fuchs BM, Amann R (2017) Direct-geneFISH: a simplified protocol for the simultaneous detection and quantification of genes and rRNA in microorganisms. Environ Microbiol 19(1):70–82. https://doi.org/10.1111/1462-2920.13432

    Article  CAS  PubMed  Google Scholar 

  15. Azeredo J, Sutherland IW (2008) The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol 9(4):261–266. https://doi.org/10.2174/138920108785161604

    Article  CAS  PubMed  Google Scholar 

  16. Catalao MJ, Gil F, Moniz-Pereira J, Sao-Jose C, Pimentel M (2013) Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiol Rev 37(4):554–571. https://doi.org/10.1111/1574-6976.12006

    Article  CAS  PubMed  Google Scholar 

  17. Brussow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68(3):560–602, table of contents. https://doi.org/10.1128/MMBR.68.3.560-602.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394. https://doi.org/10.1146/annurev.micro.57.030502.090759

    Article  CAS  PubMed  Google Scholar 

  19. Tadmor AD, Ottesen EA, Leadbetter JR, Phillips R (2011) Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science 333(6038):58–62. https://doi.org/10.1126/science.1200758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kenzaka T, Tani K, Nasu M (2010) High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. ISME J 4(5):648–659. https://doi.org/10.1038/ismej.2009.145

    Article  CAS  PubMed  Google Scholar 

  21. Allers E, Moraru C, Duhaime MB, Beneze E, Solonenko N, Barrero-Canosa J, Amann R, Sullivan MB (2013) Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environ Microbiol 15(8):2306–2318. https://doi.org/10.1111/1462-2920.12100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dang VT, Sullivan MB (2014) Emerging methods to study bacteriophage infection at the single-cell level. Front Microbiol 5:724. https://doi.org/10.3389/fmicb.2014.00724

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vilas Boas D, Almeida C, Sillankorva S, Nicolau A, Azeredo J, Azevedo NF (2016) Discrimination of bacteriophage infected cells using locked nucleic acid fluorescent in situ hybridization (LNA-FISH). Biofouling 32(2):179–190. https://doi.org/10.1080/08927014.2015.1131821

    Article  CAS  PubMed  Google Scholar 

  24. Azevedo AS, Almeida C, Pereira B, Madureira P, Wengel J, Azevedo NF (2015) Detection and discrimination of biofilm populations using locked nucleic acid/2′-O-methyl-RNA fluorescence in situ hybridization (LNA/2′OMe-FISH). Biochem Eng J. https://doi.org/10.1016/j.bej.2015.04.024

  25. Almeida C, Azevedo NF, Santos S, Keevil CW, Vieira MJ (2011) Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). PLoS One 6(3):e14786. https://doi.org/10.1371/journal.pone.0014786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brock TD, Brock ML (1966) Autoradiography as a tool in microbial ecology. Nature 209(5024):734–736. https://doi.org/10.1038/209734a0

    Article  CAS  PubMed  Google Scholar 

  27. Ouverney CC, Fuhrman JA (1999) Combined Microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl Environ Microbiol 65(4):1746–1752

    Article  CAS  Google Scholar 

  28. Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer KH, Wagner M (1999) Combination of fluorescent in situ hybridization and microautoradiography - a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol 65(3):1289–1297

    Article  CAS  Google Scholar 

  29. Cottrell MT, Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66(4):1692–1697. https://doi.org/10.1128/aem.66.4.1692-1697.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Okabe S, Kindaichi T, Ito T (2004) MAR-FISH—an ecophysiological approach to link phylogenetic affiliation and in situ metabolic activity of microorganisms at a single-cell resolution. Microbes Environ 19(2):83–98. https://doi.org/10.1264/jsme2.19.83

    Article  Google Scholar 

  31. Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293(5529):484–487. https://doi.org/10.1126/science.1061338

    Article  CAS  PubMed  Google Scholar 

  32. Guerquin-Kern JL, Wu TD, Quintana C, Croisy A (2005) Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy). Biochim Biophys Acta 1724(3):228–238. https://doi.org/10.1016/j.bbagen.2005.05.013

    Article  CAS  PubMed  Google Scholar 

  33. Lechene CP, Luyten Y, McMahon G, Distel DL (2007) Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science 317(5844):1563–1566. https://doi.org/10.1126/science.1145557

    Article  CAS  PubMed  Google Scholar 

  34. Fike DA, Gammon CL, Ziebis W, Orphan VJ (2008) Micron-scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: a paired nanoSIMS and CARD-FISH approach. ISME J 2(7):749–759. https://doi.org/10.1038/ismej.2008.39

    Article  CAS  PubMed  Google Scholar 

  35. Slaveykova VI, Guignard C, Eybe T, Migeon HN, Hoffmann L (2009) Dynamic NanoSIMS ion imaging of unicellular freshwater algae exposed to copper. Anal Bioanal Chem 393(2):583–589. https://doi.org/10.1007/s00216-008-2486-x

    Article  CAS  PubMed  Google Scholar 

  36. Popa R, Weber PK, Pett-Ridge J, Finzi JA, Fallon SJ, Hutcheon ID, Nealson KH, Capone DG (2007) Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J 1(4):354–360. https://doi.org/10.1038/ismej.2007.44

    Article  CAS  PubMed  Google Scholar 

  37. Dekas AE, Connon SA, Chadwick GL, Trembath-Reichert E, Orphan VJ (2016) Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. ISME J 10(3):678–692. https://doi.org/10.1038/ismej.2015.145

    Article  CAS  PubMed  Google Scholar 

  38. Li T, Wu TD, Mazeas L, Toffin L, Guerquin-Kern JL, Leblon G, Bouchez T (2008) Simultaneous analysis of microbial identity and function using NanoSIMS. Environ Microbiol 10(3):580–588. https://doi.org/10.1111/j.1462-2920.2007.01478.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gao D, Huang X, Tao Y (2016) A critical review of NanoSIMS in analysis of microbial metabolic activities at single-cell level. Crit Rev Biotechnol 36(5):884–890. https://doi.org/10.3109/07388551.2015.1057550

    Article  CAS  PubMed  Google Scholar 

  40. Schmiedel D, Kikhney J, Masseck J, Rojas Mencias PD, Schulze J, Petrich A, Thomas A, Henrich W, Moter A (2014) Fluorescence in situ hybridization for identification of microorganisms in acute chorioamnionitis. Clin Microbiol Infect 20(9):O538–O541. https://doi.org/10.1111/1469-0691.12526

    Article  CAS  PubMed  Google Scholar 

  41. Stender H (2003) PNA FISH: an intelligent stain for rapid diagnosis of infectious diseases. Expert Rev Mol Diagn 3(5):649–655. https://doi.org/10.1586/14737159.3.5.649

    Article  CAS  PubMed  Google Scholar 

  42. Valm AM, Mark Welch JL, Borisy GG (2012) CLASI-FISH: principles of combinatorial labeling and spectral imaging. Syst Appl Microbiol 35(8):496–502. https://doi.org/10.1016/j.syapm.2012.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Valm AM, Mark Welch JL, Rieken CW, Hasegawa Y, Sogin ML, Oldenbourg R, Dewhirst FE, Borisy GG (2011) Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc Natl Acad Sci U S A 108(10):4152–4157. https://doi.org/10.1073/pnas.1101134108

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zimmermann T, Rietdorf J, Pepperkok R (2003) Spectral imaging and its applications in live cell microscopy. FEBS Lett 546(1):87–92. https://doi.org/10.1016/s0014-5793(03)00521-0

    Article  CAS  PubMed  Google Scholar 

  45. Lukumbuzya M, Schmid M, Pjevac P, Daims H (2019) A multicolor fluorescence in situ hybridization approach using an extended set of fluorophores to visualize microorganisms. Front Microbiol 10:1383. https://doi.org/10.3389/fmicb.2019.01383

    Article  PubMed  PubMed Central  Google Scholar 

  46. Behnam F, Vilcinskas A, Wagner M, Stoecker K (2012) A straightforward DOPE (double labeling of oligonucleotide probes)-FISH (fluorescence in situ hybridization) method for simultaneous multicolor detection of six microbial populations. Appl Environ Microbiol 78(15):5138–5142. https://doi.org/10.1128/aem.00977-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Valm AM, Oldenbourg R, Borisy GG (2016) Multiplexed spectral imaging of 120 different fluorescent labels. PLoS One 11(7):e0158495. https://doi.org/10.1371/journal.pone.0158495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stoecker K, Dorninger C, Daims H, Wagner M (2010) Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl Environ Microbiol 76(3):922–926. https://doi.org/10.1128/AEM.02456-09

    Article  CAS  PubMed  Google Scholar 

  49. Schimak MP, Kleiner M, Wetzel S, Liebeke M, Dubilier N, Fuchs BM (2016) MiL-FISH: Multilabeled Oligonucleotides for Fluorescence In Situ Hybridization Improve Visualization of Bacterial Cells. Appl Environ Microbiol 82(1):62–70. https://doi.org/10.1128/AEM.02776-15

    Article  CAS  PubMed  Google Scholar 

  50. Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12(11):2885–2893. https://doi.org/10.1111/j.1462-2920.2010.02258.x

    Article  PubMed  PubMed Central  Google Scholar 

  51. Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA (2010) Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 4(6):719–728. https://doi.org/10.1038/ismej.2010.9

    Article  CAS  PubMed  Google Scholar 

  52. Fett WF, Cooke PH (2003) Scanning electron microscopy of native biofilms on mung bean sprouts. Can J Microbiol 49(1):45–50. https://doi.org/10.1139/W03-002

    Article  CAS  PubMed  Google Scholar 

  53. Morris CE, Monier JM, Jacques MA (1997) Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms. Appl Environ Microbiol 63(4):1570–1576

    Article  CAS  Google Scholar 

  54. Peredo EL, Simmons SL (2017) Leaf-FISH: Microscale Imaging of Bacterial Taxa on Phyllosphere. Front Microbiol 8:2669. https://doi.org/10.3389/fmicb.2017.02669

    Article  PubMed  Google Scholar 

  55. Shrestha NK, Scalera NM, Wilson DA, Brehm-Stecher B, Procop GW (2011) Rapid identification of Staphylococcus aureus and methicillin resistance by flow cytometry using a peptide nucleic acid probe. J Clin Microbiol 49(9):3383–3385. https://doi.org/10.1128/jcm.01098-11

    Article  PubMed  PubMed Central  Google Scholar 

  56. Trnovsky J, Merz W, Della-Latta P, Wu F, Arendrup MC, Stender H (2008) Rapid and accurate identification of Candida albicans isolates by use of PNA FISHFlow. J Clin Microbiol 46(4):1537–1540. https://doi.org/10.1128/JCM.00030-08

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hartmann H, Stender H, Schafer A, Autenrieth IB, Kempf VA (2005) Rapid identification of Staphylococcus aureus in blood cultures by a combination of fluorescence in situ hybridization using peptide nucleic acid probes and flow cytometry. J Clin Microbiol 43(9):4855–4857. https://doi.org/10.1128/JCM.43.9.4855-4857.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Verweij PE, Breuker IM, Rijs AJMM, Meis JFGM (1999) Comparative study of seven commercial yeast identification systems. J Clin Pathol 52(4):271–273

    Article  CAS  Google Scholar 

  59. Kovarik ML, Gach PC, Ornoff DM, Wang Y, Balowski J, Farrag L, Allbritton NL (2012) Micro total analysis systems for cell biology and biochemical assays. Anal Chem 84(2):516–540. https://doi.org/10.1021/ac202611x

    Article  CAS  PubMed  Google Scholar 

  60. Rodriguez-Mateos P, Azevedo NF, Almeida C, Pamme N (2020) FISH and chips: a review of microfluidic platforms for FISH analysis. Med Microbiol Immunol. https://doi.org/10.1007/s00430-019-00654-1

  61. Liu P, Meagher RJ, Light YK, Yilmaz S, Chakraborty R, Arkin AP, Hazen TC, Singh AK (2011) Microfluidic fluorescence in situ hybridization and flow cytometry (muFlowFISH). Lab Chip 11(16):2673–2679. https://doi.org/10.1039/c1lc20151d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sieben VJ, Marun CSD, Pilarski PM, Kaigala GV, Pilarski LM, Backhouse CJ (2007) FISH and chips: chromosomal analysis on microfluidic platforms. IET Nanobiotechnol 1(3):27–35

    Article  CAS  Google Scholar 

  63. Sato K (2015) Microdevice in cellular pathology: microfluidic platforms for fluorescence in situ hybridization and analysis of circulating tumor cells. Anal Sci 31(9):867–873

    Article  CAS  Google Scholar 

  64. Kwasny D, Vedarethinam I, Shah P, Dimaki M, Silahtaroglu A, Tumer Z, Svendsen WE (2012) Advanced microtechnologies for detection of chromosome abnormalities by fluorescent in situ hybridization. Biomed Microdevices 14(3):453–460

    Article  CAS  Google Scholar 

  65. Packard MM, Shusteff M, Alocilja EC (2012) Microfluidic-based amplification-free bacterial DNA detection by dielectrophoretic concentration and fluorescent resonance energy transfer assisted in situ hybridization (FRET-ISH). Biosensors (Basel) 2(4):405–416. https://doi.org/10.3390/bios2040405

    Article  CAS  Google Scholar 

  66. Liu W, Kim HJ, Lucchetta EM, Du W, Ismagilov RF (2009) Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab Chip 9(15):2153–2162. https://doi.org/10.1039/b904958d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bottari B, Ercolini D, Gatti M, Neviani E (2006) Application of FISH technology for microbiological analysis: current state and prospects. Appl Microbiol Biotechnol 73(3):485–494. https://doi.org/10.1007/s00253-006-0615-z

    Article  CAS  PubMed  Google Scholar 

  68. Bauman JG, Wiegant J, Borst P, van Duijn P (1980) A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochromelabelled RNA. Exp Cell Res 128(2):485–490. https://doi.org/10.1016/0014-4827(80)90087-7

    Article  CAS  PubMed  Google Scholar 

  69. Cummins LL, Owens SR, Risen LM, Lesnik EA, Freier SM, Mcgee D, Guinosso CJ, Cook PD (1995) Characterization of fully 2’-modified oligoribonucleotide heteroduplex and homoduplex hybridization and nuclease sensitivity. Nucleic Acids Res 23(11):2019–2024

    Article  CAS  Google Scholar 

  70. Yilmaz LS, Noguera DR (2004) Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization. Appl Environ Microbiol 70(12):7126–7139. https://doi.org/10.1128/AEM.70.12.7126-7139.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cerqueira L, Azevedo NF, Almeida C, Jardim T, Keevil CW, Vieira MJ (2008) DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH). Int J Mol Sci 9(10):1944–1960. https://doi.org/10.3390/ijms9101944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254(5037):1497–1500

    Article  CAS  Google Scholar 

  73. Guimaraes N, Azevedo NF, Figueiredo C, Keevil CW, Vieira MJ (2007) Development and application of a novel peptide nucleic acid probe for the specific detection of Helicobacter pylori in gastric biopsies. J Clin Microbiol 45(9):3089–3094

    Article  CAS  Google Scholar 

  74. Fontenete S, Guimarães N, Leite M, Figueiredo C, Wengel J, Filipe Azevedo N (2013) Hybridization-based detection of Helicobacter pylori at human body temperature using advanced locked nucleic acid (LNA) probes. PLoS One 8:e81230. https://doi.org/10.1371/journal.pone.0081230

    Article  PubMed  PubMed Central  Google Scholar 

  75. Petersen M, Wengel J (2003) LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol 21(2):74–81. https://doi.org/10.1016/s0167-7799(02)00038-0

    Article  CAS  PubMed  Google Scholar 

  76. Lehtola MJ, Loades CJ, Keevil CW (2005) Advantages of peptide nucleic acid oligonucleotides for sensitive site directed 16S rRNA fluorescence in situ hybridization (FISH) detection of Campylobacter jejuni, Campylobacter coli and Campylobacter lari. J Microbiol Methods 62(2):211–219

    Article  CAS  Google Scholar 

  77. Fontenete S, Carvalho D, Guimaraes N, Madureira P, Figueiredo C, Wengel J, Azevedo NF (2016) Application of locked nucleic acid-based probes in fluorescence in situ hybridization. Appl Microbiol Biotechnol 100(13):5897–5906. https://doi.org/10.1007/s00253-016-7429-4

    Article  CAS  PubMed  Google Scholar 

  78. Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID (2011) Biocompatible quantum dots for biological applications. Chem Biol 18(1):10–24

    Article  CAS  Google Scholar 

  79. Kaul Z, Yaguchi T, Kaul SC, Hirano T, Wadhwa R, Taira K (2003) Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell Res 13(6):503–507. https://doi.org/10.1038/sj.cr.7290194

    Article  PubMed  Google Scholar 

  80. Wu SM, Zhao X, Zhang ZL, Xie HY, Tian ZQ, Peng J, Lu ZX, Pang DW, Xie ZX (2006) Quantum-dot-labeled DNA probes for fluorescence in situ hybridization (FISH) in the microorganism Escherichia coli. ChemPhysChem 7(5):1062–1067. https://doi.org/10.1002/cphc.200500608

    Article  CAS  PubMed  Google Scholar 

  81. Wu SM, Tian ZQ, Zhang ZL, Huang BH, Jiang P, Xie ZX, Pang DW (2010) Direct fluorescence in situ hybridization (FISH) in Escherichia coli with a target-specific quantum dot-based molecular beacon. Biosens Bioelectron 26(2):491–496. https://doi.org/10.1016/j.bios.2010.07.067

    Article  CAS  PubMed  Google Scholar 

  82. Baruah S, Ortinero C, Shipin OV, Dutta J (2012) Manganese doped zinc sulfide quantum dots for detection of Escherichia coli. J Fluoresc 22(1):403–408. https://doi.org/10.1007/s10895-011-0973-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by (a) Base Funding—UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology, and Energy—LEPABE—funded by national funds through the FCT/MCTES (PIDDAC); (b) Projects POCI-01-0145-FEDER-016678 (Coded-FISH), POCI-01-0145-FEDER-029841 (POLY-PREVENTT), and POCI-01-0145-FEDER-029961 (ColorISH), funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES; (c) BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno M. Guimarães .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guimarães, N.M., Azevedo, N.F., Almeida, C. (2021). FISH Variants. In: Azevedo, N.F., Almeida, C. (eds) Fluorescence In-Situ Hybridization (FISH) for Microbial Cells. Methods in Molecular Biology, vol 2246. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1115-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1115-9_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1114-2

  • Online ISBN: 978-1-0716-1115-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics