Skip to main content

Bioinformatic Tools and Guidelines for the Design of Fluorescence In Situ Hybridization Probes

  • Protocol
  • First Online:
Fluorescence In-Situ Hybridization (FISH) for Microbial Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2246))

Abstract

Fluorescence in situ hybridization (FISH) is a well-established technique that allows the detection of microorganisms in diverse types of samples (e.g., clinical, food, environmental samples, and biofilm communities). The FISH probe design is an essential step in this technique. For this, two strategies can be used, the manual form based on multiple sequence alignment to identify conserved regions and programs/software specifically developed for the selection of the sequence of the probe. Additionally, databases/software for the theoretical evaluation of the probes in terms of specificity, sensitivity, and thermodynamic parameters (melting temperature and Gibbs free energy change) are used. The purpose of this chapter is to describe the essential steps and guidelines for the design of FISH probes (e.g., DNA and Nucleic Acid Mimic (NAM) probes), and its theoretical evaluation through the application of diverse bioinformatic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amann RI, Ludwig W, Schleifer KW (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. PGI D, Rmusk R (2018) Fluorescence in situ hybridization (FISH) in food pathogen detection. Int J Mol Biol 3(3):143–149. https://doi.org/10.15406/ijmboa.2018.03.00066

    Article  Google Scholar 

  3. Lukumbuzya M, Schmid M, Pjevac P, Daims H (2019) A multicolor fluorescence in situ hybridization approach using an extended set of Fluorophores to visualize microorganisms. Front Microbiol 10:1383. https://doi.org/10.3389/fmicb.2019.01383

    Article  PubMed  PubMed Central  Google Scholar 

  4. Valm AM, Mark JL, Rieken CW, Hasegawa Y, Sogin ML, Oldenbourg R, Dewhirst FE, Borysi GG (2011) Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc Natl Acad Sci U S A 108:4152–4157. https://doi.org/10.1073/pnas.1101134108

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wyart M, Botstein D, Wingreen NS (2010) Evaluating gene expression dynamics using pairwise RNA FISH data. PLoS Comput Biol 6(11):e1000979. https://doi.org/10.1371/journal.pcbi.1000979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amann R, Fuchs BM, Behrens S (2001) The identification of microorganisms by fluorescence in situ hybridisation. Curr Opin Biotechnol 12:231–236. https://doi.org/10.1016/S0958-1669(00)00204-4

    Article  CAS  PubMed  Google Scholar 

  7. Fukuda K, Ogawa K, Taniguchi H, Saito M (2016) Molecular approaches to studying microbial communities: targeting the 16S ribosomal RNA gene. J UOEH 38:223–232. https://doi.org/10.7888/juoeh.38.223

    Article  CAS  PubMed  Google Scholar 

  8. Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6:339–348. https://doi.org/10.1038/nrmicro1888

    Article  CAS  PubMed  Google Scholar 

  9. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pernthaler A, Amann R (2004) Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl Environ Microbiol 70:5426–5433. https://doi.org/10.1128/AEM.70.9.5426-5433.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moter A, Göbel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112. https://doi.org/10.1016/S0167-7012(00)00152-4

    Article  CAS  PubMed  Google Scholar 

  12. Silverman AP, Kool ET (2007) Oligonucleotide probes for RNA-targeted fluorescence in situ hybridization. Adv Clin Chem 43:79–115. https://doi.org/10.1016/S0065-2423(06)43003-1

    Article  CAS  PubMed  Google Scholar 

  13. Cerqueira L, Azevedo NF, Almeida F, Jardim T, Keevil CW, Vieira MJ (2008) DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH). Int J Mol Sci 9:1944–1960. https://doi.org/10.3390/ijms9101944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Frickmann H, Zautner AE, Moter A, Kikhney J, Hagen RM, Stender H, Poppert S (2017) Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol 43:263–293. https://doi.org/10.3109/1040841X.2016.1169990

    Article  CAS  PubMed  Google Scholar 

  15. Yilmaz LS, Noguera DR (2004) Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization. Appl Environ Microbiol 70:7126–7139. https://doi.org/10.1128/AEM.70.12.7126-7139.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prudent E, Raoult D (2019) Fluorescence in situ hybridization, a complementary molecular tool for the clinical diagnosis of infectious diseases by intracellular and fastidious bacteria. FEMS Microbiol Rev 43:88–107. https://doi.org/10.1093/femsre/fuy040

    Article  CAS  PubMed  Google Scholar 

  17. Acton QA (2013) Nucleic acid probes - advances in research and application, Atlanta, Georgia

    Google Scholar 

  18. Cerqueira L, Fernandes RM, Ferreira RM, Carneiro F, Ribeiro DM, Figueiredo C, Keevil CW, Azevedo NF, Vieira MJ (2011) PNA-FISH as a new diagnostic method for the determination of clarithromycin resistance of Helicobacter pylori. BMC Microbiol 11:101. https://doi.org/10.1186/1471-2180-11-101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fontenete S, Carvalho D, Guimarães N, Madureira P, Figueiredo C, Wengel J, Azevedo NF (2016) Application of locked nucleic acid-based probes in fluorescence in situ hybridization. Appl Microbiol Biotechnol 100:5897–5906. https://doi.org/10.1007/s00253-016-7429-4

    Article  CAS  PubMed  Google Scholar 

  20. Muro MA (2005) Probe design, production, and applications. In: Walker JM, Rapley R (eds) Medical biomethods handbook. Humana Press, Totowa, NJ

    Google Scholar 

  21. SantaLucia J, Allawi HT, Seneviratne PA (1996) Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 35:3555–3562. https://doi.org/10.1021/bi951907q

    Article  CAS  PubMed  Google Scholar 

  22. Fontenete S, Guimarães N, Wengel J (2015) Prediction of melting temperatures in fluorescence in situ hybridization (FISH) procedures using thermodynamic models. Crit Rev Biotechnol 36:1–12. https://doi.org/10.3109/07388551.2014.993589

    Article  CAS  Google Scholar 

  23. Abd-Elsalam KA (2003) Bioinformatic tools and guideline for PCR primer design. Afr J Biotechnol 5:91–95. https://doi.org/10.5897/AJB2003.000-1019

    Article  Google Scholar 

  24. Apte A, Daniel S (2009) PCR primer design. Cold Spring Harb Protoc 2009(3):pdb.ip65. https://doi.org/10.1101/pdb.ip65

    Article  PubMed  Google Scholar 

  25. Rocha R, Sousa JM, Cerqueira L, Vieira JM, Almeida C, Azevedo NF (2019) Development and application of peptide nucleic acid fluorescence in situ hybridization for the specific detection of Listeria monocytogenes. Food Microbiol 80:1–8. https://doi.org/10.1016/j.fm.2018.12.009

    Article  CAS  PubMed  Google Scholar 

  26. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2007) GenBank. Nucleic Acids Res 35:D21–D25. https://doi.org/10.1093/nar/gks1195

    Article  CAS  PubMed  Google Scholar 

  27. Wuyts J, Perrière G, Van De Peer Y (2004) The European ribosomal RNA database. Nucleic Acids Res 32:D101–D103. https://doi.org/10.1093/nar/gkh065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer J, Yarza P, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  29. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642. https://doi.org/10.1093/nar/gkt1244

    Article  CAS  PubMed  Google Scholar 

  30. Kent and Riegel’s handbook of industrial chemistry and biotechnology. Google - Livros. https://books.google.pt/books?id=AYjFoLCNHYUC&pg=PA1315&lpg=PA1315&dq=Hundreds+of+sequences+have+been+deposited+in+the+public+database&source=bl&ots=GRZuTD5wDD&sig=ACfU3U3wf-DzSpq8ihqwrCz-aXldSUqP0w&hl=pt-PT&sa=X&ved=2ahUKEwjl9cG918rjAhUj2uAKHaXzAdAQ6AEwA. Accessed 23 July 2019

  31. Chen SH, Lo CZ, Tsai MC, Hsiung CA, Lin CY (2007) The unique probe selector: a comprehensive web service for probe design and oligonucleotide arrays. BMC Bioinformatics 9 Suppl 1(Suppl 1):S8. https://doi.org/10.1186/1471-2105-9-S1-S8

    Article  CAS  Google Scholar 

  32. Ashelford KE, Weightman AJ, Fry JC (2002) PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Res 30:3481–3489. https://doi.org/10.1093/nar/gkf450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang YT, Yang J, Chrobak M, Borneman J (2014) PRISE2: software for designing sequence-selective PCR primers and probes. BMC Bioinformatics 15:317. https://doi.org/10.1186/1471-2105-15-317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Noguera DR, Wright ES, Camejo P, Yilmaz LS (2014) Mathematical tools to optimize the design of oligonucleotide probes and primers. Appl Microbiol Biotechnol 98:9595–9608. https://doi.org/10.1007/s00253-014-6165-x

    Article  CAS  PubMed  Google Scholar 

  35. Gelali E, Girelli G, Matsumoto M, Wernersson E, Custodio J, Mota A, Schweitzer M, Ferenc K, Li X, Mirzazadeh R, Agostini F, Schell JP, Lanner F, Crosseto N, Bienko M (2019) iFISH is a publically available resource enabling versatile DNA FISH to study genome architecture. Nat Commun 10:1636. https://doi.org/10.1038/s41467-019-09616-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kubota K, Ohashi A, Imachi H, Harada H (2006) Improved in situ hybridization efficiency with locked-nucleic-acid-incorporated DNA probes. Appl Environ Microbiol 72:5311–5317. https://doi.org/10.1128/AEM.03039-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Almeida C, Azevedo NF, Bento JC, Cerca N, Ramos H, Vieria MJ, Keevil CW (2013) Rapid detection of urinary tract infections caused by Proteus spp. using PNA-FISH. Eur J Clin Microbiol Infect Dis 32:781–786. https://doi.org/10.1007/s10096-012-1808-2

    Article  CAS  PubMed  Google Scholar 

  39. Almeida C, Cerqueira L, Azevedo NF, Vieira MJ (2013) Detection of Salmonella enterica serovar Enteritidis using real time PCR, immunocapture assay, PNA FISH and standard culture methods in different types of food samples. Int J Food Microbiol 161:16–22. https://doi.org/10.1016/j.ijfoodmicro.2012.11.014

    Article  CAS  PubMed  Google Scholar 

  40. Azevedo AS, Almeida C, Pereira B, Madureira P, Wengel J (2015) Detection and discrimination of biofilm populations using locked nucleic acid/2’-O-methyl-RNA fluorescence in situ hybridization (LNA/2’OMe-FISH). Biochem Eng J 104:64–73. https://doi.org/10.1016/j.bej.2015.04.024

    Article  CAS  Google Scholar 

  41. Fontenete S, Leite M, Guimarães N, Madureira P, Ferreira RM, Figueiredo C, Wenge J, Azevedo NF (2015) Towards Fluorescence In Vivo Hybridization (FIVH) Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes. PLoS One 10:4. https://doi.org/10.1371/journal.pone.0125494

    Article  CAS  Google Scholar 

  42. Fontenete S, Carvalho D, Guimarães N, Madureira P, Ferreira RM, Figueiredo C, Wenge J (2016) Application of locked nucleic acid-based probes in fluorescence in situ hybridization. Appl Microbiol Biotechnol 100:5897–5906. https://doi.org/10.1089/dna.1991.10.233

    Article  CAS  PubMed  Google Scholar 

  43. Lima JF, Cerqueira L, Figueiredo C, Oliveira C, Azevedo NF (2018) Anti-miRNA oligonucleotides: a comprehensive guide for design. RNA Biol 15:338–352. https://doi.org/10.1080/15476286.2018.1445959

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 5:911–941. https://doi.org/10.1006/jmbi.1999.2700

    Article  Google Scholar 

  45. Reuter JS, Mathews DH (2010) RNAstructure : software for RNA secondary structure prediction and analysis. BMC Bioinformatics 15:11–129. https://doi.org/10.1186/1471-2105-11-129

    Article  CAS  Google Scholar 

  46. Tolstrup N, Nielsen PS, Kolberg JG, Frankel AM, Vissing H, Kauppinen S (2003) OligoDesign: optimal design of LNA (locked nucleic acid) oligonucleotide capture probes for gene expression profiling. Nucleic Acids Res 31(13):3758–3762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dwivedi B, Schmieder R, Goldsmith DB, Edwards RA, Breitbart M (2012) PhiSiGns: an online tool to identify signature genes in phages and design PCR primers for examining phage diversity. BMC Bioinformatics 13:37. https://doi.org/10.1186/1471-2105-13-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rychlik JDO (2003) OLIGO Primer Analysis Software. In: Womble DD, Krawetz SA (eds) Introduction to bioinformatics a theoretical and practical approach. Humana Press, Totowa, NJ

    Google Scholar 

  49. Almeida C, Azevedo NF, Santos S, Keevil CW, Vieira MJ (2011) Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). PLoS One 6:e14786. https://doi.org/10.1371/journal.pone.0014786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ghosh S, Mishra S, Banerjee T, Mukhopadhyay R (2013) Facilitating mismatch discrimination by surface-affixed PNA probes via ionic regulation. Langmuir 29:3370–3379. https://doi.org/10.1021/la400125x

    Article  CAS  PubMed  Google Scholar 

  51. Hur D, Kim MS, Song M, Jung J, Park H (2015) Detection of genetic variation using dual-labeled peptide nucleic acid (PNA) probe-based melting point analysis. Biol Proced Online 17:14. https://doi.org/10.1186/s12575-015-0027-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. You Y, Moreira BG, Behlke MA, Owczarzy R (2006) Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res 34:60. https://doi.org/10.1093/nar/gkl175

    Article  CAS  Google Scholar 

  53. Owczarzy R, You Y, Groth CL, Tataurov AV (2011) Stability and mismatch discrimination of locked nucleic acid–DNA duplexes. Biochemistry 50:9352–9367. https://doi.org/10.1021/bi200904e

    Article  CAS  PubMed  Google Scholar 

  54. Öhrmalm C, Jobs M, Eriksson R, Golbob S, Elfaitouri A, Benachenhou F, Strømme M, Blomberg J (2010) Hybridization properties of long nucleic acid probes for detection of variable target sequences, and development of a hybridization prediction algorithm. Nucleic Acids Res 38:e195. https://doi.org/10.1093/nar/gkq777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fontenete S, Guimarães N, Leite M, Figueiredo C, Wengel J, Azevedo NF (2013) Hybridization-based detection of Helicobacter pylori at human body temperature using advanced locked nucleic acid (LNA) probes. PLoS One 8:e81230. https://doi.org/10.1371/journal.pone.0081230

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mitchel J (1997) Nucleic acids: thermal stability and denaturation. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.612.3148&rep=rep1&type=pdf. Accessed 27 July 2019

  57. Guimarães N, Azevedo NF, Figueiredo C, Keevil CW, Vieira MJ (2007) Development and application of a novel peptide nucleic acid probe for the specific detection of Helicobacter pylori in gastric biopsy specimens. J Clin Microbiol 45:3089–3094. https://doi.org/10.1128/JCM.00858-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cerqueira L, Fernandes RM, Ferreira RM, Oleastro M, Carneiro F, Brandão C, Nunes PP, Ribeiro DM, Figueiredo C, Keevil CW, Vieira MK, Azevedo NF (2013) Validation of a fluorescence in situ hybridization method using peptide nucleic acid probes for detection of Helicobacter pylori clarithromycin resistance in gastric biopsy specimens. J Clin Microbiol 51:1887–1893. https://doi.org/10.1128/JCM.00302-13

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fontenete S, Barros J, Madureira P, Figueiredo C, Wengel J, Azevedo NF (2015) Mismatch discrimination in fluorescent in situ hybridization using different types of nucleic acids. Appl Microbiol Biotechnol 9:3961–3969. https://doi.org/10.1007/s00253-015-6389-4

    Article  CAS  Google Scholar 

  60. Burbano CS, Reinhold-Hurek B, Hurek T (2010) LNA-substituted degenerate primers improve detection of nitrogenase gene transcription in environmental samples. Environ Microbiol Rep 2:251–257. https://doi.org/10.1111/j.1758-2229.2009.00107.x

    Article  CAS  PubMed  Google Scholar 

  61. Shakeel S, Karim S, Ali A (2006) Peptide nucleic acid (PNA) — a review. J Chem Technol Biotechnol 6:892–899. https://doi.org/10.1002/jctb.1505

    Article  CAS  Google Scholar 

  62. Oligo modifications for increased duplex stability & nuclease resistance. https://pdfs.semanticscholar.org/73b2/92e4cd314676657b0ce0b3fa8279efd00d66.pdf. Accessed 28 July 2019

  63. Drobniewski FA, More PG, Harris GS (2000) Differentiation of Mycobacterium tuberculosis complex and nontuberculous mycobacterial liquid cultures by using peptide nucleic acid-fluorescence in situ hybridization probes. J Clin Microbiol 38:444–447

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by (a) Base Funding—UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy—LEPABE—funded by national funds through the FCT/MCTES (PIDDAC); (b) Projects POCI-01-0145-FEDER-016678 (Coded-FISH), POCI-01-0145-FEDER-03043 (CLASInVivo), and POCI-01-0145-FEDER- 028659 (NAM4toxins), funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI), and by national funds (PIDDAC) through FCT/MCTES; and (c) BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreia S. Azevedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Teixeira, H., Sousa, A.L., Azevedo, A.S. (2021). Bioinformatic Tools and Guidelines for the Design of Fluorescence In Situ Hybridization Probes. In: Azevedo, N.F., Almeida, C. (eds) Fluorescence In-Situ Hybridization (FISH) for Microbial Cells. Methods in Molecular Biology, vol 2246. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1115-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1115-9_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1114-2

  • Online ISBN: 978-1-0716-1115-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics