Skip to main content

Application of Nucleic Acid Mimics in Fluorescence In Situ Hybridization

  • Protocol
  • First Online:
Fluorescence In-Situ Hybridization (FISH) for Microbial Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2246))

Abstract

Traditionally, RNA and DNA probes are used in fluorescence in situ hybridization (FISH) methods for microbial detection and characterization of communities’ structure and diversity. However, the recent introduction of nucleic acid mimics (NAMs) has improved the robustness of the FISH methods in terms of sensitivity and specificity. Several NAMs have been used, of which the most relevant are peptide nucleic acid (PNA), locked nucleic acids (LNA), 2′-O-methyl RNA (2′OMe), and phosphorothioates (PS). In this chapter, we describe a protocol using PNA and LNA/2’OMe probes for microbial detection by FISH, pointing out the differences between them. These protocols are easily adapted to different microorganisms and different probe sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738. https://doi.org/10.1038/171737a0

    Article  CAS  PubMed  Google Scholar 

  2. Karkare S, Bhatnagar D (2006) Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino. Appl Microbiol Biotechnol 71:575–586

    Article  CAS  Google Scholar 

  3. Morihiro K, Kasahara Y, Obika S (2017) Biological applications of xeno nucleic acids. Mol BioSyst 13:235–245

    Article  CAS  Google Scholar 

  4. Cerqueira L, Azevedo NF, Almeida C et al (2008) DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH). Int J Mol Sci 9:1944–1960. https://doi.org/10.3390/ijms9101944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guimarães N, Azevedo NF, Figueiredo C et al (2007) Development and application of a novel peptide nucleic acid probe for the specific detection of Helicobacter pylori in gastric biopsy specimens. J Clin Microbiol 45:3089–3094. https://doi.org/10.1128/JCM.00858-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bayani J, Squire JA (2007) Application and interpretation of FISH in biomarker studies. Cancer Lett 249:97–109. https://doi.org/10.1016/j.canlet.2006.12.030

    Article  CAS  PubMed  Google Scholar 

  7. Rogers SW, Moorman TB, Ong SK (2007) Fluorescent in situ hybridization and micro-autoradiography applied to ecophysiology in soil. Soil Sci Soc Am J 71:620. https://doi.org/10.2136/sssaj2006.0105

    Article  CAS  Google Scholar 

  8. Dmochowski IJ, Tang X (2007) Taking control of gene expression with light-activated oligonucleotides. Biotechniques 43:161, 163, 165 passim

    Article  CAS  Google Scholar 

  9. Catalina P, Cobo F, Cortés JL et al (2007) Conventional and molecular cytogenetic diagnostic methods in stem cell research: a concise review. Cell Biol Int 31:861–869. https://doi.org/10.1016/j.cellbi.2007.03.012

    Article  CAS  PubMed  Google Scholar 

  10. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  CAS  Google Scholar 

  11. Singh SK, Nielsen P, Koshkin AA, Wengel J (1998) LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem Commun 4:455–456. https://doi.org/10.1039/a708608c

    Article  Google Scholar 

  12. Majlessi M, Nelson NC, Becker MM (1998) Advantages of 2’-O-methyl oligoribonucleotide probes for detecting RNA targets. Nucleic Acids Res 26:2224–2229. https://doi.org/10.1093/nar/26.9.2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eckstein F (1970) Nucleoside Phosphorothioates. J Am Chem Soc 92:4718–4723. https://doi.org/10.1021/ja00718a039

  14. Eckstein F (2014) Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther 24:374–387. https://doi.org/10.1089/nat.2014.0506

    Article  CAS  PubMed  Google Scholar 

  15. Cmarko D, Koberna K (2007) Electron microscopy in situ hybridization: tracking of DNA and RNA sequences at high resolution. Methods Mol Biol 369:213–228. https://doi.org/10.1007/978-1-59745-294-6_11

    Article  CAS  PubMed  Google Scholar 

  16. Rocha R, Santos RS, Madureira P et al (2016) Optimization of peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria: the effect of pH, dextran sulfate and probe concentration. J Biotechnol 226:1–7. https://doi.org/10.1016/j.jbiotec.2016.03.047

    Article  CAS  PubMed  Google Scholar 

  17. Fontenete S, Leite M, Guimarães N et al (2015) Toward fluorescence in vivo hybridization (FIVH) detection of H. pylori in gastric mucosa using advanced LNA probes. PLoS One 10:e0125494. https://doi.org/10.1371/journal.pone.0125494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Herzer S, Englert DF (2001) Nucleic acid hybridization. In: Molecular biology problem solver: a laboratory guide. Wiley, New York, pp 399–460

    Chapter  Google Scholar 

  19. Yilmaz LŞ, Ökten HE, Noguera DR (2006) Making all parts of the 16S rRNA of Escherichia coli accessible in situ to single DNA oligonucleotides. Appl Environ Microbiol 72:733–744. https://doi.org/10.1128/AEM.72.1.733-744.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Danilevich VN, Petrovskaya LE, Grishin EV (2008) A highly efficient procedure for the extraction of soluble proteins from bacterial cells with mild chaotropic solutions. Chem Eng Technol 31:904–910. https://doi.org/10.1002/ceat.200800024

    Article  CAS  Google Scholar 

  21. Huang E, Talukder S, Hughes TR et al (2011) BzpF is a CREB-like transcription factor that regulates spore maturation and stability in Dictyostelium. Dev Biol 358:137–146. https://doi.org/10.1016/j.ydbio.2011.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Priyakumar UD, Hyeon C, Thirumalai D, MacKerell AD (2009) Urea destabilizes RNA by forming stacking interactions and multiple hydrogen bonds with nucleic acid bases. J Am Chem Soc 131:17759–17761. https://doi.org/10.1021/ja905795v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lambert D, Draper DE (2012) Denaturation of RNA secondary and tertiary structure by urea: simple unfolded state models and free energy parameters account for measured m -values. Biochemistry 51:9014–9026. https://doi.org/10.1021/bi301103j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koley D, Bard AJ (2010) Triton X-100 concentration effects on membrane permeability of a single HeLa cell by scanning electrochemical microscopy (SECM). Proc Natl Acad Sci 107:16783–16787. https://doi.org/10.1073/pnas.1011614107

    Article  PubMed  Google Scholar 

  25. Fontenete S, Carvalho D, Guimarães N et al (2016) Application of locked nucleic acid-based probes in fluorescence in situ hybridization. Appl Microbiol Biotechnol 100:5897–5906. https://doi.org/10.1007/s00253-016-7429-4

    Article  CAS  PubMed  Google Scholar 

  26. Chan JH, Lim S, Wong WSF (2006) Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol 33:533–540

    Article  CAS  Google Scholar 

  27. Nielsen PE (2001) Peptide nucleic acid: a versatile tool in genetic diagnostics and molecular biology. Curr Opin Biotechnol 12:16–20

    Article  CAS  Google Scholar 

  28. Perry-O’Keefe H, Rigby S, Oliveira K et al (2001) Identification of indicator microorganisms using a standardized PNA FISH method. J Microbiol Methods 47:281–292

    Article  Google Scholar 

  29. Orum H, Nielsen PE, Jørgensen M et al (1995) Sequence-specific purification of nucleic acids by PNA-controlled hybrid selection. BioTechniques 19:472–480

    CAS  PubMed  Google Scholar 

  30. Fuchs BM, Wallner G, Beisker W et al (1998) Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 64:4973–4982

    Article  CAS  Google Scholar 

  31. Fuchs BM, Syutsubo K, Ludwig W, Amann R (2001) In situ accessibility of Escherichia coli 23S rRNA to fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 67:961–968. https://doi.org/10.1128/AEM.67.2.961-968.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Drobniewski FA, More PG, Harris GS (2000) Differentiation of Mycobacterium tuberculosis complex and nontuberculous mycobacterial liquid cultures by using peptide nucleic acid-fluorescence in situ hybridization probes. J Clin Microbiol 38:444–447

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Stender H, Fiandaca M, Hyldig-Nielsen JJ, Coull J (2002) PNA for rapid microbiology. J Microbiol Methods 48:1–17. https://doi.org/10.1016/S0167-7012(01)00340-2

    Article  CAS  PubMed  Google Scholar 

  34. Obika S, Nanbu D, Hari Y et al (1997) Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3, −endo sugar puckering. Tetrahedron Lett 38:8735–8738. https://doi.org/10.1016/S0040-4039(97)10322-7

    Article  CAS  Google Scholar 

  35. Koshkin AA, Rajwanshi VK, Wengel J (1998) Novel convenient syntheses of LNA [2.2.1]bicyclo nucleosides. Tetrahedron Lett 39:4381–4384. https://doi.org/10.1016/S0040-4039(98)00706-0

    Article  CAS  Google Scholar 

  36. Ishige T, Itoga S, Matsushita K (2018) Locked nucleic acid technology for highly sensitive detection of somatic mutations in cancer. Adv Clin Chem 83:53–72

    Article  CAS  Google Scholar 

  37. Braasch DA, Corey DR (2001) Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol 8:1–7

    Article  CAS  Google Scholar 

  38. Kvaernø L, Kumar R, Dahl BM et al (2000) Synthesis of abasic locked nucleic acid and two seco-LNA derivatives and evaluation of their hybridization properties compared with their more flexible DNA counterparts. J Org Chem 65:5167–5176

    Article  Google Scholar 

  39. Kierzek E, Ciesielska A, Pasternak K et al (2005) The influence of locked nucleic acid residues on the thermodynamic properties of 2′-O-methyl RNA/RNA heteroduplexes. Nucleic Acids Res 33:5082–5093. https://doi.org/10.1093/nar/gki789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Søe MJ, Møller T, Dufva M, Holmstrøm K (2011) A sensitive alternative for microRNA in situ hybridizations using probes of 2′-o-methyl RNA + LNA. J Histochem Cytochem 59:661–672. https://doi.org/10.1369/0022155411409411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Azevedo AS, Almeida C, Pereira B et al (2015) Detection and discrimination of biofilm populations using locked nucleic acid/2’-O-methyl-RNA fluorescence in situ hybridization (LNA/2’OMe-FISH). Biochem Eng J 104:64–73. https://doi.org/10.1016/j.bej.2015.04.024

    Article  CAS  Google Scholar 

  42. Silvia F, Joana B, Pedro M et al (2015) Mismatch discrimination in fluorescent in situ hybridization using different types of nucleic acids. Appl Microbiol Biotechnol 99:3961–3969. https://doi.org/10.1007/s00253-015-6389-4

    Article  CAS  PubMed  Google Scholar 

  43. Vilas Boas D, Almeida C, Sillankorva S et al (2016) Discrimination of bacteriophage infected cells using locked nucleic acid fluorescent in situ hybridization (LNA-FISH). Biofouling 32:179–190. https://doi.org/10.1080/08927014.2015.1131821

    Article  CAS  PubMed  Google Scholar 

  44. Fontenete S, Leite M, Cappoen D et al (2016) Fluorescence in vivo hybridization (FIVH) for detection of Helicobacter pylori infection in a C57BL/6 mouse model. PLoS One 11:e0148353. https://doi.org/10.1371/journal.pone.0148353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6(5):339–348

    Article  CAS  Google Scholar 

  46. Bouvier T, Del Giorgio PA (2003) Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiol Ecol 44:3–15

    Article  CAS  Google Scholar 

  47. Santos RS, Guimarães N, Madureira P, Azevedo NF (2014) Optimization of a peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method for the detection of bacteria and disclosure of a formamide effect. J Biotechnol 187:16–24. https://doi.org/10.1016/j.jbiotec.2014.06.023

    Article  CAS  PubMed  Google Scholar 

  48. Fontenete S, Guimarães N, Leite M et al (2013) Hybridization-based detection of Helicobacter pylori at human body temperature using advanced locked nucleic acid (LNA) probes. PLoS One 8:e81230. https://doi.org/10.1371/journal.pone.0081230

    Article  PubMed  PubMed Central  Google Scholar 

  49. Azevedo NF, Vieira MJ, Keevil CW (2003) Establishment of a continuous model system to study Helicobacter pylori survival in potable water biofilms. Water Sci Technol 47(5):155–160

    Article  CAS  Google Scholar 

  50. Blake RD, Delcourt SG (1996) Thermodynamic effects of formamide on DNA stability. Nucleic Acids Res 24:2095–2103. https://doi.org/10.1093/nar/24.11.2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yilmaz LS, Noguera DR (2004) Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization. Appl Environ Microbiol 70:7126–7139. https://doi.org/10.1128/AEM.70.12.7126-7139.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rohde A, Hammerl JA, Appel B et al (2015) FISHing for bacteria in food - a promising tool for the reliable detection of pathogenic bacteria? Food Microbiol 46:395–407. https://doi.org/10.1016/j.fm.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  53. Fontenete S, Carvalho D, Lourenço A et al (2016) FISHji: new ImageJ macros for the quantification of fluorescence in epifluorescence images. Biochem Eng J 112:61–69. https://doi.org/10.1016/j.bej.2016.04.001

    Article  CAS  Google Scholar 

  54. Azevedo AS, Sousa IM, Fernandes RM et al (2019) Optimizing locked nucleic acid/2′-O-methyl-RNA fluorescence in situ hybridization (LNA/2′OMe-FISH) procedure for bacterial detection. PLoS One 14:e0217689. https://doi.org/10.1371/journal.pone.0217689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by (a) Base Funding—UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy—LEPABE—funded by national funds through the FCT/MCTES (PIDDAC); (b) Projects POCI-01-0145-FEDER-016678 (Coded-FISH), POCI-01-0145-FEDER-03043 (CLASInVivo) and POCI-01-0145-FEDER- 028659 (NAM4toxins), funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI), and by national funds (PIDDAC) through FCT/MCTES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luzia Mendes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oliveira, R., Azevedo, A.S., Mendes, L. (2021). Application of Nucleic Acid Mimics in Fluorescence In Situ Hybridization. In: Azevedo, N.F., Almeida, C. (eds) Fluorescence In-Situ Hybridization (FISH) for Microbial Cells. Methods in Molecular Biology, vol 2246. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1115-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1115-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1114-2

  • Online ISBN: 978-1-0716-1115-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics