Skip to main content

Some Recent Studies on the Local Reactivity of O2 on Pt3 Nanoislands Supported on Mono- and Bi-Metallic Backgrounds

  • Chapter
  • First Online:
Theory and Experiment in Electrocatalysis

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 50))

  • 2223 Accesses

Abstract

Small bimetallic clusters have shown in recent years their potential as catalysts and high-density magnetic data storage materials. These nanoscale alloys present a number of structures and phases different from those of their bulk counterparts. Taking advantage of this large spectrum of possibilities, it is in principle possible to design and build materials with specific novel properties dependent on the size and concentration of the nano-alloys. Some constituents are more amenable than others to be used as components of nanomaterials in this emerging paradigm. Transition-metal bimetallic clusters, for example, form an important class of the former, yet tailoring of desired properties of these clusters are sometimes difficult to achieve because of the complexity of their electronic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

REFERENCES

  1. V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, and N. M. Markovic, Nat. Mater 6 (3), (2007) 241; W. Kuch, Nat. Mater 2 (8), (2003) 505; S. Rusponi, T. Cren, N. Weiss, M. Epple, P. Buluschek, L. Claude, and H. Brune, Nat. Mater 2 (8), (2003) 546.

    Google Scholar 

  2. A. Sebetci, Z. B. Guvenc, and H. Kokten, International Journal of Modern Physics C 15 (7), (2004) 981; L. Xiao and L. C. Wang, Journal of Physical Chemistry A 108 (41), (2004) 8605; Y. H. Chui and K. Y. Chan, Molecular Simulation 30 (10), (2004) 679; A. Sebetci and Z. B. Guvenc, Modelling and Simulation in Materials Science and Engineering 12 (6), (2004) 1131; A. Sebetci, Z. B. Guvenc, and H. Kokten, Computational Materials Science 35 (3), (2006) 192.

    Google Scholar 

  3. M. Gilliot, A. E. Naciri, L. Johann, J. P. Stoquert, J. J. Grob, D. Muller, and M. Stchakovsky, Physical Review B 74 (4) (2006) 045423(1–8); M. B. Knickelbein, Journal of Chemical Physics 125 (4) (2006) 044308(1–7); J. L. Rodriguez-Lopez, F. Aguilera-Granja, K. Michaelian, and A. Vega, Physical Review B 67 (17) (2003) 174413(1–9); Y. N. Xie and J. A. Blackman, Physical Review B 66 (15) (2002) 155417(1–7); Y. N. Xie and J. A. Blackman, Physical Review B 66 (8) (2002) 085410(1–5); E. L. Uzunova, G. St Nikolov, and H. Mikosch, Journal of Physical Chemistry A 106 (16), (2002) 4104; A. Pramann, K. Koyasu, A. Nakajima, and K. Kaya, Journal of Physical Chemistry A 106 (11), (2002) 2483; R. Guirado-Lopez, F. Aguilera-Granja, and J. M. Montejano-Carrizales, Physical Review B 65 (4) (2002) 045420(1–9); D. Gerion, A. Hirt, I. M. L. Billas, A. Chatelain, and W. A. de Heer, Physical Review B 62 (11), (2000) 7491.

    Google Scholar 

  4. S. Pick, V. S. Stepanyuk, A. L. Klavsyuk, L. Niebergall, W. Hergert, J. Kirschner, and P. Bruno, Physical Review B 70 (22) (2004) 224419(1–8).

    Google Scholar 

  5. J. A. Sotelo, L. Yan, M. Wang, and J. M. Seminario, Phys. Rev. A 75 (2), (2007) 022511.

    Google Scholar 

  6. A. Bzowski, M. Kuhn, T. K. Sham, J. A. Rodriguez, and J. Hrbek, Physical Review B 59 (20), (1999) 13379; A. Bzowski and T. K. Sham, Physical Review B 48 (11), (1993) 7836; M. Kuhn, Z. H. Lu, and T. K. Sham, Physical Review B 45 (7), (1992) 3703; S. Sankaranarayanan, V. R. Bhethanabotla, and B. Joseph, Physical Review B 72 (19) (2005) 195405(1–15); S. Sankaranarayanan, V. R. Bhethanabotla, and B. Joseph, Physical Review B 71 (19) (2005) (195415(1–15)); T. K. Sham, A. Hiraya, and M. Watanabe, Physical Review B 55 (12), (1997) 7585.

    Google Scholar 

  7. J. F. Fernandez and J. J. Alonso, Physical Review B 76 (1) (2007) 014403(1–6); M. Ikegami, H. Okamoto, and Y. Yuri, Physical Review Special Topics-Accelerators and Beams 9 (12) (2006); W. M. Witzel and S. Das Sarma, Physical Review B 76 (4) (2007) 045218(1–10); J. Wunderlich, A. C. Irvine, J. Zemen, V. Holy, A. W. Rushforth, E. De Ranieri, U. Rana, K. Vyborny, J. Sinova, C. T. Foxon, R. P. Campion, D. A. Williams, B. L. Gallagher, and T. Jungwirth, Physical Review B 76 (5) (2007) 054424(1–8); F. Zhai and H. Q. Xu, Physical Review B 76 (3) (2007) 035306(1–5).

    Google Scholar 

  8. A. Cehovin, C. M. Canali, and A. H. MacDonald, Physical Review B 66 (9) (2002) 094430(1–15).

    Google Scholar 

  9. J. E. Grose, A. N. Pasupathy, D. C. Ralph, B. Ulgut, and H. D. Abruna, Physical Review B 71 (3) (2005) 035306(1–5).

    Google Scholar 

  10. L. Angers, A. Chepelianskii, R. Deblock, B. Reulet, and H. Bouchiat, Physical Review B 76 (7) (2007) 075331(1–11); A. Caprez, B. Barwick, and H. Batelaan, Physical Review Letters 99 (21) (2007) 210401(1–4); S. Jo, G. L. Khym, D. I. Chang, Y. Chung, H. J. Lee, K. Kang, D. Mahalu, and V. Umansky, Physical Review B 76 (3) (2007) 035110(1–8); I. O. Kulik, Physical Review B 76 (12) (2007)125313(1–7); S. Uryu and T. Ando, Physical Review B 76 (11) (2007) 115420(1–6); Y. Aharonov and L. Vaidman, Ann. NY Acad. Sci. 755, (1995) 361; Y. Aharonov and L. Vaidman, Phys. Rev. A 56 (1), (1997) 1055.

    Google Scholar 

  11. M. Valden, X. Lai, and D. W. Goodman, Science 281 (5383), (1998) 1647.

    Google Scholar 

  12. R. J. Magyar, V. Mujica, M. Marquez, and C. Gonzalez, Physical Review B (Condensed Matter and Materials Physics) 75 (14), (2007) 144421.

    Google Scholar 

  13. L. Yan and J. M. Seminario, Int. J. Quantum Chem. 107 (2), (2007) 440; J. M. Seminario, Y. Ma, L. A. Agapito, L. Yan, R. A. Araujo, S. Bingi, N. S. Vadlamani, K. Chagarlamudi, T. S. Sudarshan, M. L. Myrick, P. E. Colavita, P. D. Franzon, D. P. Nackashi, L. Cheng, Y. Yao, and J. M. Tour, J. Nanoscience Nanotech. 4 (7), (2004) 907.

    Google Scholar 

  14. Y. Ma and P. B. Balbuena, Chem. Phys. Lett. 447, (2007) 289; C. R. Henry, Surface Science Reports 31 (7–8), (1998) 231; T. V. Choudhary and D. W. Goodman, Applied Catalysis a-General 291 (1–2), (2005) 32; K. Luo, X. Lai, C. W. Yi, K. A. Davis, K. K. Gath, and D. W. Goodman, Journal of Physical Chemistry B 109 (9), (2005) 4064; W. T. Wallace, B. K. Min, and D. W. Goodman, Topics in Catalysis 34 (1–4), (2005) 17.

    Google Scholar 

  15. S. R. Calvo and P. B. Balbuena, Surf. Sci. 601, (2007) 165; S. R. Calvo and P. B. Balbuena, Surf. Sci. 601, (2007) 4786; M. Chen, D. Kumar, C.-W. Yi, and D. W. Goodman, Science 310, (2005) 291; M. S. Chen and D. W. Goodman, Science 306 (5694), (2004) 252.

    Google Scholar 

  16. M. J. Lopez, P. A. Marcos, and J. A. Alonso, J. Chem. Phys. 104 (3), (1996) 1056; J. A. Rodriguez, Surf. Sci. Rep. 24, (1996) 223; J. H. Sinfelt, Bimetallic Catalysts. Discoveries, Concepts and Applications. (Wiley, New York, 1983).

    Google Scholar 

  17. B. Hammer, J. K. Norskov, and C. G. a. H. K. Bruce, in Advances in Catalysis (Academic Press, 2000), Vol. Volume 45, p. 71; J. R. Kitchin, J. K. Norskov, M. A. Barteau, and J. G. Chen, Physical Review Letters 93 (15), (2004) 156801; M. Mavrikakis, B. Hammer, and J. K. Nørskov, Physical Review Letters 81 (13), (1998) 2819; B. Hammer and J. K. Norskov, Surface Science 343 (3), (1995) 211.

    Google Scholar 

  18. J. R. Kitchin, J. K. Norskov, M. A. Barteau, and J. G. Chen, The Journal of Chemical Physics 120 (21), (2004) 10240.

    Google Scholar 

  19. P. B. Balbuena, S. R. Calvo, E. J. Lamas, P. F. Salazar, and J. M. Seminario, J. Phys. Chem. B 110, (2006) 17452; Y. Wang and P. B. Balbuena, J. Phys. Chem. B 109 (18), (2005) 18902; J. M. Seminario, L. A. Agapito, L. Yan, and P. B. Balbuena, Chem. Phys. Lett. 410 (4–6), (2005) 275; P. B. Balbuena, D. Altomare, N. Vadlamani, S. Bingi, L. A. Agapito, and J. M. Seminario, J. Phys. Chem. A 108 (30), 6378 (2004); P. B. Balbuena, D. Altomare, L. A. Agapito, and J. M. Seminario, J. Phys. Chem. B 107 (49), (2003) 13671.

    Google Scholar 

  20. J. C. Sotelo and J. M. Seminario, The Journal of Chemical Physics 127 (24), (2007) 244706.

    Google Scholar 

  21. J. C. Sotelo and J. M. Seminario, The Journal of Chemical Physics 128 (20), (2008) 204701.

    Google Scholar 

  22. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven Jr, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian-2003, Revision B.4 (Gaussian, Inc., Pittsburgh PA, 2003).

    Google Scholar 

  23. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46 (11), (1992) 6671; J. P. Perdew and Y. Wang, Phys. Rev. B 45 (23), (1992) 13244.

    Google Scholar 

  24. A. D. Becke, J. Chem. Phys. 98, (1993) 1372.

    Google Scholar 

  25. A. D. Becke, Phys. Rev. A 38 (6), (1988) 3098.

    Google Scholar 

  26. W. R. Wadt and P. J. Hay, J. Chem. Phys. 82 (1), (1985) 284; P. J. Hay and W. R. Wadt, J. Chem. Phys. 82 (1), (1985) 270; P. J. Hay, J. Chem. Phys. 66 (10), (1977) 4377.

    Google Scholar 

  27. P. C. Hariharan and J. A. Pople, Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 28 (3), (1973) 213; W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56 (5), (1972) 2257.

    Google Scholar 

  28. H. B. Schlegel, J. Comput. Chem. 3, (1982) 214.

    Google Scholar 

  29. G. Y. Sun, J. Kurti, P. Rajczy, M. Kertesz, J. Hafner, and G. Kresse, Journal of Molecular Structure-Theochem 624, (2003) 37; J. Paier, R. Hirschl, M. Marsman, and G. Kresse, Journal of Chemical Physics 122 (23) (2005) 234102(1–13); D. Hobbs, G. Kresse, and J. Hafner, Physical Review B 62 (17), (2000) 11556; G. Kresse and J. Furthmuller, Physical Review B 54 (16), (1996) 11169.

    Google Scholar 

  30. P. E. Blöchl, O. Jepsen, and O. K. Andersen, Physical Review B 49 (23) (1994) 16223.

    Google Scholar 

  31. J. M. Seminario, A. G. Zacarias, and J. M. Tour, J. Phys. Chem. A 103 (39) (1999) 7883; J. M. Seminario, C. E. De La Cruz, and P. A. Derosa, J. Am. Chem. Soc. 123 (2001) 5616; J. M. Seminario, Proc. IEEE Nanotech. Conf. 4 (2004) 518; J. M. Seminario, C. De La Cruz, P. A. Derosa, and L. Yan, J. Phys. Chem. B 108 (46), 17879 (2004); J. M. Seminario, Nature Materials 4 (2) (2005) 111; J. M. Seminario, L. Yan, and Y. Ma, Proc. IEEE 93 (10) (2005) 1753.

    Google Scholar 

  32. P. A. Derosa and J. M. Seminario, J. Phys. Chem. B 105 (2) (2001) 471; J. M. Seminario, A. G. Zacarias, and P. A. Derosa, J. Chem. Phys. 116 (2002) 1671; J. M. Seminario, L. E. Cordova, and P. A. Derosa, Proc. IEEE 91 (11) (2003) 1958; J. M. Seminario and L. Yan, Int. J. Quantum Chem. 102 (2005) 711.

    Google Scholar 

  33. L. Yan and J. M. Seminario, J. Phys. Chem. A 109 (30) (2005) 6628; J. C. Sotelo, L. Yan, M. Wang, and J. M. Seminario, Physical Review A (Atomic, Molecular, and Optical Physics) 75 (2) (2007) 022511.

    Google Scholar 

  34. A. Eichler and J. Hafner, Physical Review Letters 79 (22) (1997) 4481.

    Google Scholar 

  35. S. Inagaki, Journal of the Physical Society of Japan 75 (4) (2006) 044706(1–4); S. Tang and J. E. Hirsch, Physical Review B 42 (1), (1990) 771; Y. Nagaoka, Physical Review 147 (1) (1966) 392.

    Google Scholar 

  36. A. Kootte, C. Haas, and R. A. d. Groot, Journal of Physics: Condensed Matter 3 (9) (1991) 1133.

    Google Scholar 

  37. A. Kashyap, K. B. Garg, A. K. Solanki, T. Nautiyal, and S. Auluck, Physical Review B 60 (4) (1999) 2262.

    Google Scholar 

  38. A. Roudgar and A. Groß, Journal of Electroanalytical Chemistry 548, (2003) 121.

    Google Scholar 

  39. A. Roudgar and A. Gross, Surface Science 559 (2–3) (2004) L180.

    Google Scholar 

  40. J. K. Norskov, T. Bligaard, A. Logadottir, S. Bahn, L. B. Hansen, M. Bollinger, H. Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl, and C. J. H. Jacobsen, Journal of Catalysis 209 (2) (2002) 275.

    Google Scholar 

  41. A. Eichler, F. Mittendorfer, and J. Hafner, Physical Review B 62 (7), (2000) 4744.

    Google Scholar 

  42. R. Adzic, in Electrocatalysis, edited by J. Lipkowski and P. N. Ross (Wiley-VCH, New York, 1998), p. 197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sotelo, J.C., Seminario, J.M. (2010). Some Recent Studies on the Local Reactivity of O2 on Pt3 Nanoislands Supported on Mono- and Bi-Metallic Backgrounds. In: Balbuena, P., Subramanian, V. (eds) Theory and Experiment in Electrocatalysis. Modern Aspects of Electrochemistry, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5594-4_5

Download citation

Publish with us

Policies and ethics