Skip to main content

The Comet Assay In Vivo in Humans

  • Protocol
  • First Online:
Genotoxicity and DNA Repair

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

In the last decades, the comet assay has been used as a molecular biomarker to detect DNA damage in several human biomonitoring studies. Nevertheless, many of these studies are often inconclusive or offer poor quality data due to study design constraints. This chapter describes not only the experimental protocol to carry the alkaline version of the comet assay in human cells but also considers many of the obstacles that the researcher faces while carrying a human biomonitoring study, such as sample size, sample type, sample collection, statistics, and result communication. Understanding assay limitations, both experimental and biological, is essential to improve both data quality and data relevance obtained and to guarantee that comet assay continues to provide enhanced reliability as a biomarker in human biomonitoring studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McKelvey-Martin V, Green M, Schomezer P et al (1993) The single cell gel electrophoresis assay (comet assay): a European review. Mutat Res 288:47–63

    Article  CAS  PubMed  Google Scholar 

  2. Collins AR, Dobson VL, Dusinska M et al (1997) The Comet assay: what can it really tell us? Mutat Res 375:183–193

    Article  CAS  PubMed  Google Scholar 

  3. Burlinson B, Tice RR, Speit G et al (2007) Fourth International Workgroup on Genotoxicity testing: results of the in vivo Comet assay workgroup. Mutat Res 627:31–35

    Article  CAS  PubMed  Google Scholar 

  4. Collins A, Duthie S, Dobson V (1993) Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis 14:1733–1735

    Article  CAS  PubMed  Google Scholar 

  5. Gedik C, Ewen S, Collins A (1992) Single-cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells. Int J Radiat Biol 62:313–320

    Article  CAS  PubMed  Google Scholar 

  6. Pfuhler S, Wolf HU (1996) Detection of DNA-crosslinking agents with the alkaline comet assay. Environ Mol Mutagen 27(1):196–201

    Article  CAS  PubMed  Google Scholar 

  7. Santos J, Singh N, Natajaran A (1997) Fluorescence in situ hybridization with comets. Exp Cell Res 232(2):407–411

    Article  CAS  PubMed  Google Scholar 

  8. Wentzel JF, Gouws C, Huysamen C et al (2010) Assessing the DNA methylation status of single cells with the comet assay. Anal Biochem 400:190–194

    Article  CAS  PubMed  Google Scholar 

  9. Collins AR (2004) The comet assay for DNA damage and repair. Principles, applications, and limitations. Mol Biotechnol 26:249–261

    Article  CAS  PubMed  Google Scholar 

  10. Links JM, Kensler TW, Groopman JD (1995) Biomarkers and mechanistic approaches in environmental epidemiology. Annu Rev Public Health 16:83–103

    Article  CAS  PubMed  Google Scholar 

  11. IEH (1996) In: The use of biomarkers in environmental exposure assessment, Leicester, UK

    Google Scholar 

  12. Collins AR, Oscoz AA, Brunborg G et al (2008) The comet assay: topical issues. Mutagenesis 23(3):143–151

    Article  CAS  PubMed  Google Scholar 

  13. Faust F, Kassie F, Knasmüller S et al (2004) The use of the alkaline comet assay with lymphocytes in human biomonitoring studies. Mutat Res 566:209–229

    Article  CAS  PubMed  Google Scholar 

  14. Speit G, Hanelt S, Helbig R et al (1996) Detection of DNA effects in human cells with the comet assay and their relevance for mutagenesis. Toxicol Lett 88:91–98

    Article  CAS  PubMed  Google Scholar 

  15. Hartmann A, Plappert U, Poetter F et al (2003) Comparative study with the alkaline Comet assay and the chromosome aberration test. Mutat Res 536(1–2):27–38

    Article  CAS  PubMed  Google Scholar 

  16. Wong VW, Szeto Y, Collins AR et al (2005) The Comet assay: a biomonitoring tool for nutraceutical research. Curr Top Nutraceut Res 3(1):1–14

    CAS  Google Scholar 

  17. Astley S, Langrish-Smith A, Southon S et al (1999) Vitamin E supplementation and oxidative damage to DNA and plasma LDL in type 1 diabetes. Diabetes Care 22(10):1626–1631

    Article  CAS  PubMed  Google Scholar 

  18. Uriol E, Sierra M, Comendador MA et al (2013) Long-term biomonitoring of breast cancer patients under adjuvant chemotherapy: the comet assay as a possible predictive factor. Mutagenesis 28(1):39–48

    Article  CAS  PubMed  Google Scholar 

  19. Schabath MB, Spitz MR, Grossman HB et al (2003) Genetic instability in bladder cancer assessed by the comet assay. J Natl Cancer Inst 95(7):540–547

    Article  CAS  PubMed  Google Scholar 

  20. Valverde M, Rojas E (2009) Environmental and occupational biomonitoring using the Comet assay. Mutat Res 681:93–109

    Article  CAS  PubMed  Google Scholar 

  21. Silva I (1999) Cancer epidemiology: principles and methods. IARC, Lyon

    Google Scholar 

  22. Albertini RJ, Anderson D, Douglas GR et al (2000) IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. Mutat Res 463:111–172

    Article  CAS  PubMed  Google Scholar 

  23. Collins A, Koppen G, Valdiglesias V et al (2014) The comet assay as a tool for human biomonitoring studies: the ComNet project. Mutat Res 759:27–39

    Article  CAS  Google Scholar 

  24. Møller P, Knudsen LE, Loft S et al (2000) The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of counfounding factors. Cancer Epidemiol Biomarkers Prev 9:1005–1015

    PubMed  Google Scholar 

  25. Møller P (2006) Assessment of reference values for DNA damage detected by the comet assay in human blood cell DNA. Mutat Res 612:84–104

    Article  PubMed  Google Scholar 

  26. Bonita R (2006) Basic epidemiology. World Health Organization, Geneva. http://nla.gov.au/nla.cat-vn4201434

  27. Pearce N, Checkoway H, Kriebel D (2007) Bias in occupational epidemiology studies. Occup Environ Med 64:562–568

    Article  PubMed  PubMed Central  Google Scholar 

  28. Angerer J, Ewers U, Wilhelm M (2007) Human biomonitoring: state of the art. Int J Hyg Environ Health 210(3–4):201–228

    Article  CAS  PubMed  Google Scholar 

  29. Hagmar L, Bonassi S, Strömberg U et al (1998) Chromosomal aberrations in lymphocytes predict human cancer: a report from the European Study Group on Cytogenetic Biomarkers and Health (ESCH). Cancer Res 58:4117–4121

    CAS  PubMed  Google Scholar 

  30. Van Delft JHM, Baan RA, Roza L (1998) Biological effect markers for exposure to carcinogenic compound and their relevance for risk assessment. Crit Rev Toxicol 28(5):477–510

    Article  PubMed  Google Scholar 

  31. Chuang C-H, Hu M-L (2004) Use of whole blood directly for single-cell gel electrophoresis (comet) assay in vivo and white blood cells for in vitro assay. Mutat Res 564:75–82

    Article  CAS  PubMed  Google Scholar 

  32. Eren K, Özmeriç N, Sardas S (2002) Monitoring of buccal epithelial cells by alkaline comet assay (single cell gel electrophoresis technique) in cytogenetic evaluation of chlorhexidine. Clin Oral Investig 6:150–154

    Article  PubMed  Google Scholar 

  33. Rojas E, Valverde M, Lopez MC et al (2000) Evaluation of DNA damage in exfoliated tear duct epithelial cells from individuals exposed to air pollution assessed by single cell gel electrophoresis assay. Mutat Res 468:11–17

    Article  CAS  PubMed  Google Scholar 

  34. Morris I, Ilott S, Dixon L et al (2002) The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) and its relationship to fertilization and embryo development. Hum Reprod 17(4):990–998

    Article  CAS  PubMed  Google Scholar 

  35. WHO (2010) WHO guidelines on drawing blood: best practices in phlebotomy. Agency for Healthcare Research and Quality (AHRQ). http://www.guideline.gov/content.aspx?id=37621. Accessed 20 Nov 2013

  36. Hininger I, Chollat-Namy A, Sauvaigo S et al (2004) Assessment of DNA damage by comet assay on frozen total blood: method and evaluation in smokers and non-smokers. Mutat Res 558:75–80

    Article  CAS  PubMed  Google Scholar 

  37. Duthie S, Pirie L, Jenkinson A et al (2002) Cryopreserved versus freshly isolated lymphocytes in human biomonitoring: endogenous and induced DNA damage, antioxidant status and repair capability. Mutagenesis 17(3):211–214

    Article  CAS  PubMed  Google Scholar 

  38. Holland NT, Smith MT, Eskenazi B et al (2003) Biological sample collection and processing for molecular epidemiological studies. Mutat Res 543:217–234

    Article  CAS  PubMed  Google Scholar 

  39. Narayanan S, Donovan M, Duthie S (2001) Lysis of whole blood in vitro causes DNA strand breaks in human lymphocytes. Mutagenesis 16(6):455–459

    Article  CAS  PubMed  Google Scholar 

  40. Anderson D, Yu T-W, Dobrzynska MM et al (1997) Effects in the Comet assay of storage conditions on human blood. Teratog Carcinog Mutagen 17:115–125

    Article  CAS  PubMed  Google Scholar 

  41. Villavicencio D (2006) Evaluation of storage conditions for assessing DNA damage using the comet assay. Indiana University

    Google Scholar 

  42. Al-Salmani K, Abbas HHK, Schulpen S et al (2011) Simplified method for the collection, storage, and comet assay analysis of DNA damage in whole blood. Free Radic Biol Med 51:719–725

    Article  CAS  PubMed  Google Scholar 

  43. Hartmann A, Agurell E, Beevers C et al (2003) Recommendations for conducting the in vivo alkaline Comet assay. Mutagenesis 18(1):45–51

    Article  CAS  PubMed  Google Scholar 

  44. Vasquez MZ (2010) Combining the in vivo comet and micronucleus assays: a practical approach to genotoxicity testing and data interpretation. Mutagenesis 25(2):187–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vasquez M (2007) Cytotoxicity and its impact on the in vivo comet assay. Environ Mol Mutagen 48:624

    Google Scholar 

  46. Azqueta A, Gutzkow KB, Brunborg G et al (2011) Towards a more reliable comet assay: optimising agarose concentration, unwinding time and electrophoresis conditions. Mutat Res 724:41–45

    Article  CAS  PubMed  Google Scholar 

  47. Ersson C, Möller L (2011) The effects on DNA migration of altering parameters in the comet assay protocol such as agarose density, electrophoresis conditions and durations of the enzyme or the alkaline treatments. Mutagenesis 26(6):689–695

    Article  CAS  PubMed  Google Scholar 

  48. Speit G, Trenz K, Schütz P et al (1999) The influence of temperature during alkaline treatment and electrophoresis on results obtained with the comet assay. Toxicol Lett 110:73–78

    Article  CAS  PubMed  Google Scholar 

  49. Tice RR, Agurell E, Anderson D et al (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  PubMed  Google Scholar 

  50. Boeck MD, Touil N, Visscher GD et al (2000) Validation and implementation of an internal standard in comet assay analysis. Mutat Res 469:181–197

    Article  PubMed  Google Scholar 

  51. Kumaravel T, Vilhar B, Faux SP et al (2009) Comet assay measurements: a perspective. Cell Biol Toxicol 25:53–64

    Article  CAS  PubMed  Google Scholar 

  52. Zainol M, Stoute J, Almeida GM et al (2009) Introducing a true internal standard for the Comet assay to minimize intra- and inter-experiment viability in measures of DNA damage and repair. Nucleic Acids Res 37(22):e150

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sharma AK, Soussaline F, Sallette J et al (2012) The influence of the number of cells scored on the sensitivity in the comet assay. Mutat Res 749:70–75

    Article  CAS  PubMed  Google Scholar 

  54. Azqueta A, Meier S, Priestley C et al (2011) The influence of scoring method on variability in results obtained with the comet assay. Mutagenesis 26(3):393–399

    Article  CAS  PubMed  Google Scholar 

  55. Lovell DP, Omori T (2008) Statistical issues in the use of the Comet assay. Mutagenesis 23(3):171–182

    Article  CAS  PubMed  Google Scholar 

  56. Azqueta A, Collins AR (2013) The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Arch Toxicol 87(6):949–968

    Article  CAS  PubMed  Google Scholar 

  57. Bailey LA, Gordi L, Green M et al (1996) Reference guide on epidemiology. Jurimetrics 36(2):159–168

    Google Scholar 

  58. Vineis P, Gallo V (2007) The epidemiology theory: principles of biomarker validation. In: Vineis P, Gallo V (eds) Epidemiology concepts of validation of biomarkers for the identification/quantification of environmental carcinogenic exposures. ECNIS, London

    Google Scholar 

  59. Wojewódzka M, Machaj EK, Goździk A et al (2008) DNA damage in subpopulations of human lymphocytes irradiated with doses in the range of 0–1 Gy of X-radiation. Nukleonika 53(4):145–149

    Google Scholar 

  60. Wiklund SJ, Agurell E (2003) Aspects of design and statistical analysis in the Comet assay. Mutagenesis 18(2):167–175

    Article  CAS  PubMed  Google Scholar 

  61. Bates MN, Hamilton JW, LaKind JS et al (2005) Workgroup report: biomonitoring study design, interpretation, and communication—lessons learned and path forward. Environ Health Perspect 113(11):1615–1621

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sandman PM (1991) Emerging communication, responsibilities of epidemiologists. J Clin Epidemiol 44(Suppl I):41S–50S

    Article  PubMed  Google Scholar 

  63. Azqueta A, Gutzkow KB, Priestley CC et al (2013) A comparative performance test of standard, medium- and high-throughput comet assays. Toxicol In Vitro 2:768–773

    Article  Google Scholar 

  64. Dusinska M, Collins AR (2008) The comet assay in human biomonitoring: gene–environment interactions. Mutagenesis 23(3):191–205

    Article  CAS  PubMed  Google Scholar 

  65. Collins A, Anderson D, Coskun E et al (2012) Launch of the ComNet (comet network) project on the comet assay in human population studies during the International Comet Assay Workshop meeting in Kuasadasi, Turkey (September 13–16, 2011). Mutagenesis 27(4):385–386

    Article  CAS  PubMed  Google Scholar 

  66. Gedik CM, Collins A (2005) Establishing the background level of base oxidation in human lymphocyte DNA: results of an interlaboratory validation study. FASEB J 19(1):82–84

    CAS  PubMed  Google Scholar 

  67. Møller P, Möller L, Godschalk RW et al (2010) Assessment and reduction of comet assay variation in relation to DNA damage: studies from the European Comet Assay Validation Group. Mutagenesis 25(2):109–111

    Article  PubMed  Google Scholar 

  68. Forchhammer L, Ersson C, Loft S et al (2012) Inter-laboratory variation in DNA damage using a standard comet assay protocol. Mutagenesis 27(6):665–672

    Article  CAS  PubMed  Google Scholar 

  69. Bennett DA, Waters MD (2000) Applying biomarker research. Environ Health Perspect 108(9):907–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bonassi S, Znaor A, Ceppi M et al (2007) An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis 28(3):625–631

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Costa, C., Teixeira, J.P. (2014). The Comet Assay In Vivo in Humans. In: Sierra, L., Gaivão, I. (eds) Genotoxicity and DNA Repair. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1068-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1068-7_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1067-0

  • Online ISBN: 978-1-4939-1068-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics