Skip to main content

Health Line Saúde24: An Econometric Spatial Analysis of Its Use

  • Chapter
  • First Online:
Geospatial Technology for Human Well-Being and Health

Abstract

The Portuguese National Health Line, S24, is an initiative of the Portuguese Health Ministry which seeks to improve accessibility to health care and to rationalize the use of existing resources by directing users to the most appropriate institutions of the national public health services. This study describes and analyses the use of S24. For S24 data, the location attribute is an important source of information to describe its use. Consequently, this study analyses the number of calls received, at a municipal level, under two different spatial econometric approaches. This analysis is important for future development of decision support indicators in a hospital context, based on the economic impact of the use of this health line. Considering the discrete nature of data, the number of calls to S24 in each municipality is better modelled by a Poisson model, considering covariate information: demographic and socioeconomic information, characteristics of the Portuguese health system, and development indicators. In order to explain model spatial variability, the data autocorrelation can be explained in a Bayesian setting through different hierarchical log-Poisson regression models. A different approach uses an autoregressive methodology also for count data through a log-Poisson model with a spatial lag autocorrelation component, better framed under a Bayesian paradigm. With this empirical study, we find strong evidence of a spatial structure in data and obtain similar conclusions with both perspectives of analysis. This supports the view that the addition of a spatial structure to the model improves estimation, even in the case where some relevant covariates have been included. This chapter is a revised and expanded version of the paper: Simões, P., Carvalho, M.L., Aleixo, S., Gomes, S., Natário, I., A Spatial Econometric Analysis of the Calls to The Portuguese National Health Line, Econometrics, 5,24, MDPI journals, 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaike, H. 1998. Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike, 199–213. New York: Springer.

    Chapter  Google Scholar 

  • Albert, J. 2009. Bayesian Computation with R. 2nd ed. New York: Springer.

    Book  Google Scholar 

  • Anselin, L. 1988. Spatial Econometrics: Methods and Models. Dordrecht: Kluwer Academic.

    Book  Google Scholar 

  • Anselin, L. 1990. Spatial dependence and spatial structural instability in applied regression analysis. Journal of Regional Science 30: 185–207.

    Article  Google Scholar 

  • Anselin, L. 2006. Econometric theory. In Palgrave Handbook of Econometrics, ed. T. Mills and K. Patterson. Vol. 1, 901–969. Basingstoke: Springer.

    Google Scholar 

  • Anselin, L. 2007. Spatial regression analysis in R - A Workbook. Center for Spatially Integrated Social Sciences, University of Illinois, Urbana-Champaign.

    Google Scholar 

  • Anselin, L. 2010. Thirty years of spatial econometrics. Papers in Regional Science 89: 3–25.

    Article  Google Scholar 

  • Anselin, L., and R. Florax. 1995. Small sample properties of tests for spatial dependence in regression models: Some further results. In New Directions in Spatial Econometrics, 21–74. Berlin: Springer.

    Chapter  Google Scholar 

  • Anselin, L., A. Bera, R. Florax, and M. Yoon. 1996. Simple diagnostic tests for spatial dependence. Regional Science and Urban Economics 26: 77–104.

    Article  Google Scholar 

  • Anselin, L., R. Florax, and S. Rey. 2004. Econometrics for spatial models: recent advances. In Advances in Spatial Econometrics, 1–25. Berlin: Springer.

    Chapter  Google Scholar 

  • Anselin, L., I. Syabri, and Y. Kho. 2006. GeoDa: an introduction to spatial data analysis. Geographical Analysis 38: 5–22.

    Article  Google Scholar 

  • Arbia, G. 2006. Spatial Econometrics, Statistical Foundations and Applications to Regional Convergence. Heidelberg: Springer.

    Google Scholar 

  • Banerjee, S., B. Carlin, and A. Gelfand. 2004. Hierarchical Modeling and Analysis for Spatial Data. Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  • Belitz, C., A. Brezger, T. Kneib, S. Lang, and N. Umlauf. 2015. BayesX: Software for Bayesian inference in structured additive regression models. Version 2.1.

    Google Scholar 

  • Bernardo, J., and A. Smith. 1994. Bayesian theory. New York: Wiley.

    Book  Google Scholar 

  • Besag, J. 1974. Spatial interaction and the statistical analysis of lattice systems (with discussion). Journal of the Royal Statistical Society B 36, N.2: 192–236.

    Google Scholar 

  • Besag, J., and P. Moran. 1975. On the estimation and testing of spatial interaction in Gaussian lattice processes. Biometrika 62, N.3: 555–562.

    Google Scholar 

  • Besag, J., J. York, and A. Mollié. 1991. Bayesian image restoration with two applications in spatial statistics (with discussion). Annals of the Institute of Statistical Mathematics 43: 1–59.

    Article  Google Scholar 

  • Bivand, R. 2008. Implementing representations of space in economic geography. Journal of Regional Science 48, N.1: 1–27.

    Google Scholar 

  • Bivand, R., V. Goméz-Rubio, and H. Rue. 2014. Approximate Bayesian inference for spatial econometric models. Spatial Statistics 9: 146–165.

    Article  Google Scholar 

  • Bivand, R., L. Anselin, O. Berke, R. Bivand, M. Altman, L. Anselin, R. Assuncao, G.A. Bernat, W. Müller. 2014. spdep: Spatial dependence: weighting schemes, statistics and models. Available via http://cran.r-project.org/web/packages/spdep/index.html. Accessed Feb 2014.

  • Blangiardo, M., and M. Cameletti. 2015. Spatial and Spatial-temporal Bayesian Models with R-INLA. New York: Wiley.

    Book  Google Scholar 

  • Carvalho, M. L., and I. Natário. 2008. Análise de Dados Espaciais. Sociedade Portuguesa de Estatística.

    Google Scholar 

  • Clayton, D. 1992. Bayesian methods for mapping disease risk. In Geographical and Environmental Epidemiology: Methods for Small-area Studies, 205–220.

    Google Scholar 

  • Cressie, N. 1993. Statistics for Spatial Data. New York: John Wiley & Sons, Inc.

    Book  Google Scholar 

  • Dass, S., C. Lim, and T. Maiti. 2010. Experiences with approximate Bayes inference for the Poisson-CAR model. Technical Report RM679, Department of Statistics and Probability, Michigan State University.

    Google Scholar 

  • Database of contemporary Portugal, organized by Fundação Francisco Manuel dos Santos. Available via https://www.pordata.pt/. Accessed 3 April 2016.

  • Doucet, A., N. De Freitas, and N. Gordon. 2001. Sequential Monte Carlo methods in practice. New York: Springer.

    Book  Google Scholar 

  • Fischer, M. 2006. Spatial analysis and geocomputation. Vienna: Springer.

    Google Scholar 

  • Gamerman, D., and H. Lopes. 2006. Markov Chain Monte Carlo - Stochastic Simulation for Bayesian Inference. Milton Park: Chapman and Hall, CRC.

    Google Scholar 

  • Gelman, A., and D. Rubin. 1992. Inference from iterative simulation using multiple sequences (with discussion). Statistical Science 7(4): 457–511.

    Article  Google Scholar 

  • Gelman, A., J. Hwang, and A. Vehtari. 1992. Understanding predictive information criteria for Bayesian models. Journal of Statistics and Computing 24: 997–1016 (1992)

    Article  Google Scholar 

  • Geweke, J. 1991. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. Federal Reserve Bank of Minneapolis, Research Department Minneapolis, MN USA.

    Google Scholar 

  • Goméz-Rubio, V., R. Bivand, and H. Rue. 2015. A new latent class to fit spatial econometrics models with integrated nested Laplace approximations. Spatial Statistics: Emerging Patterns-Part2 27: 116–118. Details of the implementation in http://www.math.ntnu.no/inla/r-inla.org/doc/latent/slm.pdf. Accessed Sep 2016.

  • Goméz-Rubio, V., R. Bivand, and H. Rue. 2015. Estimating Spatial Econometrics Models with Integrated Nested Laplace Approximations. Technical Report-Preprint to Elsevier. Available via DIALOG. http://previa.uclm.es/profesorado/vgomez/SSTMR/papers/INLA-slm.pdf. Accessed Jun 2016.

  • Goodchild, M., R. Haining, and S. Wise. 1992. Integrating GIS and spatial data analysis: problems and possibilities. International Journal of Geographical Information Systems 6(5): 407–423.

    Article  Google Scholar 

  • Goodchild, M., L. Anselin, R. Appelbaum, and B. Harthorn. 2000. Toward spatially integrated social science. International Regional Science Review 23(2): 139–159.

    Article  Google Scholar 

  • Hoef, J. M., E.M. Hanks, and M. B. Hooten. 2017. On the Relationship between Conditional (CAR) and Simultaneous (SAR) Autoregressive Models. Preprint. arXiv:1710.07000

    Google Scholar 

  • Hoff, P. 2009. A First Course in Bayesian Statistical Methods. New York: Springer.

    Book  Google Scholar 

  • Hughes, D., and A. McGuire. 2003. Stochastic demand, production responses and hospital costs. Journal of Health Economics 22: 999–1010.

    Article  Google Scholar 

  • Jacquez, G.M., P. Goovaerts, A. Kaufmann, and R. Rommel. 2014. SpaceStat 4.0 User Manual: Software for the Space-time Analysis of Dynamic Complex Systems. Ann Arbor: BioMedware.

    Google Scholar 

  • Lambert, D., J. Brown, and R. Florax. 2010. A two-step estimator for a spatial lag model of counts: Theory, small sample performance and an application. Regional Science and Urban Economics 40: 241–252.

    Article  Google Scholar 

  • Lee, P.M. 2012. Bayesian Statistics, An Introduction. Chichester: Wiley.

    Google Scholar 

  • Lee, D. 2013. CARBayes: an R package for Bayesian spatial modeling with conditional autoregressive priors. Journal of Statistical Software 55(13): 1–24.

    Article  Google Scholar 

  • Lee, D., A. Rushworth, and G. Napier. 2013. CARBayesST: An R Package for Spatio-temporal Areal Unit Modelling with Conditional Autoregressive Priors. R package version 2.2. Available via DIALOG. http://CRAN.R-project.org/web/packages/CARBayesST/. Accessed Feb 2016

  • Leroux, B., X. Lei, and N. Breslow. 1999. Estimation of disease rates in small areas: a new mixed model for spatial dependence. In Statistical Models in Epidemiology, the Environment, and Clinical Trials, ed. M.E. Halloran, D. Berry, 135–178. New York: Springer-Verlag.

    Google Scholar 

  • LeSage, J. 1999. The Theory and Practice of Spatial Econometrics. Toledo: University of Toledo.

    Google Scholar 

  • LeSage, J. 2014. Spatial econometric panel data model specification: A Bayesian approach. Spatial Statistics 9: 122–145.

    Article  Google Scholar 

  • LeSage, J. 2015. Software for Bayesian cross section and panel spatial model comparison. Journal of Geographical Systems 17(4): 297–310.

    Article  Google Scholar 

  • LeSage, J., and R. Pace. 2009. Introduction to Spatial Econometrics. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Manski, C.F. 2000. Economic Analysis of Social Interactions. Cambridge: National Bureau of Economic Research.

    Book  Google Scholar 

  • McCullagh, P., and J. Nelder. 1989. Generalized Linear Models. 2nd ed. Boca Raton: Chapman and Hall, CRC Press.

    Book  Google Scholar 

  • Natário, I. 2013. Métodos Computacionais: INLA, Integrated Nested Laplace Approximation. Boletim da Sociedade Portuguesa de Estatística Outono de 2013, 52–56.

    Google Scholar 

  • Nelder, J. A., and Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135(3), 370–384.

    Article  Google Scholar 

  • Ord, K. 1975. Estimation methods for models of spatial interaction. Journal of the American Statistical Association 70(349): 120–126.

    Article  Google Scholar 

  • Paulino, C., M.A. Turkman, and B. Murteira. 2003. Estatística Bayesiana. Lisbon: Caloust Gulbenkian Foundation.

    Google Scholar 

  • Plummer, M. 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing, vol. 124, 125.

    Google Scholar 

  • Plummer, M., N. Best, K. Cowles, and K. Vines. 2006. CODA: Convergence Diagnosis and Output Analysis for MCMC. R News 6(1): 7–11.

    Google Scholar 

  • Portal of the National Portuguese Health Service. Available via DIALOG. https://www.dgs.pt/paginas-de-sistema/saude-de-a-a-z/saude-24.aspx. Accessed 3 Sep 2015.

  • Quddus, M. 2008. Modelling area-wide count outcomes with spatial correlation and heterogeneity - An analysis of London crash data. Accident Analysis and Prevention 40: 1486–1497.

    Article  Google Scholar 

  • R Core Team and contributors worldwide. 2013. The R Stats Package. R package version 3.5.0. Available via http://CRAN.R-project.org/

  • Rawlings, J., S. Pantula, and D. Dickey. 1998. Applied Regression Analysis: A Research Tool, 2nd ed. New York: Springer.

    Book  Google Scholar 

  • Riebler, A., S. Sørbye, D. Simpson, and H. Rue. 2016. An intuitive Bayesian spatial model for disease mapping that accounts for scaling. Statistical Methods in Medical Research 25(4): 1145–1165.

    Article  Google Scholar 

  • Ripley, B. 1981. Spatial Statistics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Rizzo, M.L. 2007. Statistical Computing with R. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Robert, C., and G. Casella. 2010. Introduction Monte Carlo Methods with R. Berlin: Springer.

    Book  Google Scholar 

  • Rue, H., S. Martino, and N. Chopin. 2009. Approximate Bayesian Inference for latent gaussian models using integrated nested Laplace approximations (with discussion). Journal of the Royal Statistical Society, Series B 71: 319–392.

    Article  Google Scholar 

  • Rue, H., S. Martino, and F. Lindgren. 2012. The R-INLA project. R-INLA. Available via http://www.r-inla.org

  • Simões, P., and I. Natário. 2016. Spatial econometric approaches for count data: an overview and new directions. International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering 10(1): 348–356.

    Google Scholar 

  • Simões, P., M.L. Carvalho, S. Aleixo, S. Gomes, and I. Natário. 2017. A Spatial Econometric Analysis of the Calls to The Portuguese National Health Line. Econometrics, MDPI Journals 5: 24.

    Google Scholar 

  • Simpson, D., H. Rue, A. Riebler, T.G. Martins, S.H. Sørbye. 2017. Penalising model component complexity: A principled, practical approach to constructing priors. Statistical Science 32(1): 1–28.

    Article  Google Scholar 

  • Smith, B. 2004. Bayesian output analysis program (BOA) for MCMC. R package version 1(5).

    Google Scholar 

  • Spiegelhalter, D., N. Best, B. Carlin, and A. Van der Linde. 2002. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society B 64(4): 583–639.

    Article  Google Scholar 

  • Spiegelhalter, D., A. Thomas, N. Best, and D. Lunn. 2003. WinBUGS version 1.4 user manual. Cambridge: MRC Biostatistics Unit.

    Google Scholar 

  • Stan, Development and Team. 2014. Stan: A C++ library for probability and sampling. Available via DIALOG. http://mc-stan.org

  • Stern, H., and N. Cressie. 1999. Inference for extremes in disease mapping. In Disease Mapping and Risk Assessment for Public Health, ed. A.B. Lawson, A. Biggeri, D. Böhning, E. Lesaffre, J.F. Viel, R. Bertollini, 63–84. Chichester: John Wiley & Sons.

    Google Scholar 

  • Stern, H., and N. Cressie. 2000. Posterior predictive model checks for disease mapping models. Statistics in Medicine 19(17–18): 2377–2397.

    Article  Google Scholar 

  • Team, R. 2013. R development core team. R: A Language and Environment for Statistical Computing 55: 275–286.

    Google Scholar 

  • Turkman, M.A., and C. Paulino. 2015. Estatística Bayesiana Computacional. Sociedade Portuguesa de Estatística.

    Google Scholar 

  • Turkman, M.A., and G. Silva. 2000. Modelos Lineares Generalizados- da teoria á prática. Sociedade Portuguesa de Estatística.

    Google Scholar 

  • Valpine, P., D. Turek, C. Paciorek, C. Anderson-Bergman, D. Lang, and R. Bodik. 2017. Programming with models: writing statistical algorithms for general model structures with NIMBLE. Journal of Computational and Graphical Statistics 26(2): 403–413.

    Article  Google Scholar 

  • Vehtari, A., A. Gelman, and J. Gabry. 1999. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Journal of Statistics and Computing. https://doi.org/10.1007/s11222-016-9696-4

  • Wall, M. 2004. A close look at the spatial structure implied by the CAR and SAR models. Journal of Statistical Planning and Inference 121(2): 311–324.

    Article  Google Scholar 

  • Watanabe, S. 2010. Asymptotic equivalence of Bayes cross-validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research 11: 3571–3594.

    Google Scholar 

  • Whittle, P. 1954. On stationary process in the plane. Biometrika 41: 434–449.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financed by national funds through FCT — Foundation for Science and Technology under the projects UID/MAT/00297/2019 and UID/MAT/00006/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Simões .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simões, P., Natário, I., Lucília Carvalho, M., Aleixo, S., Gomes, S. (2022). Health Line Saúde24: An Econometric Spatial Analysis of Its Use. In: Faruque, F.S. (eds) Geospatial Technology for Human Well-Being and Health. Springer, Cham. https://doi.org/10.1007/978-3-030-71377-5_6

Download citation

Publish with us

Policies and ethics