Skip to main content

Toxicological Aspects of Iron Oxide Nanoparticles

  • Chapter
  • First Online:
Nanotoxicology in Safety Assessment of Nanomaterials

Abstract

Iron oxide nanoparticles (ION), with unique magnetic properties, have attracted huge scientific attention for a wide variety of uses, mostly in the biomedical field, due to their high biocompatibility, ability to cross biological membranes, appropriate surface architecture and easy conjugation with targeting ligands. Their current applications include diagnostic imaging, cell labelling, site-directed drug delivery and anticancer hyperthermia therapy. The ION surface may be modified by coating with different materials, aiming to stabilize the nanoparticles in different environments, to allow biomolecule binding favouring surface attachments with several molecules, and to prolong the recognition time by the immune system. Although the potential benefits of ION are considerable, and more and more ION are being manufactured to meet the demands of the rapidly proliferating field of nanomedicine, there is an urgent need to define their toxicological profile in order to avoid any potential health risks associated with their exposure and to reach optimal benefits of their use. The purpose of this chapter is to de-scribe the current knowledge on the ION toxicological features, addressing their structure and physicochemical characteristics, main exposure pathways and toxicokinetic aspects, interaction with cells, and their toxic effects, with special attention to those at the cellular and molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abakumov MA, Semkina AS, Skorikov AS, Vishnevskiy DA, Ivanova AV, Mironova E, Davydova GA, Majouga AG, Chekhonin VP (2018) Toxicity of iron oxide nanoparticles: size and coating effects. J Biochem Mol Toxicol 32:e22225. https://doi.org/10.1002/jbt.22225

    Article  CAS  PubMed  Google Scholar 

  2. Adeyemi JA, Machado ART, Ogunjimi AT, Alberici LC, Antunes LMG, Barbosa F (2020) Cytotoxicity, mutagenicity, oxidative stress and mitochondrial impairment in human hepatoma (HepG2) cells exposed to copper oxide, copper-iron oxide and carbon nanoparticles. Ecotoxicol Environ Saf 189:109982. https://doi.org/10.1016/j.ecoenv.2019.109982

    Article  CAS  PubMed  Google Scholar 

  3. Agemy L, Friedmann-Morvinski D, Kotamraju VR, Roth L, Sugahara KN, Girard OM, Mattrey RF, Verma IM, Ruoslahti E (2011) Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc Natl Acad Sci U S A 108:17450–17455. https://doi.org/10.1073/pnas.1114518108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahamed M, Alhadlaq HA, Alam J, Majeed Khan MAA, Ali D, Alarafi S (2013) Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines. Curr Pharm Des 19:6681–6690. https://doi.org/10.2174/1381612811319370011

    Article  CAS  PubMed  Google Scholar 

  5. Ahamed M, Akhtar MJ, Khan MAM, Alhadlaq HA, Alshamsan A (2016) Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2). Colloids Surf B Biointerfaces 148:665–673. https://doi.org/10.1016/j.colsurfb.2016.09.047

    Article  CAS  PubMed  Google Scholar 

  6. Ahmad F, Ashraf N, Ashraf T, Zhou RB, Yin DC (2019) Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: their cellular uptake, biocompatibility, and biomedical applications. Appl Microbiol Biotechnol 103:2913–2935. https://doi.org/10.1007/s00253-019-09675-5

    Article  CAS  PubMed  Google Scholar 

  7. Akbarzadeh A, Samiei M, Joo SW, Anzaby M, Hanifehpour Y, Nasrabadi HT, Davaran S (2012) Synthesis, characterization and in vitro studies of doxorubicin-loaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line. J Nanobiotechnol 10:46. https://doi.org/10.1186/1477-3155-10-46

    Article  CAS  Google Scholar 

  8. Al Faraj A, Shaik AP, Shaik AS (2015) Effect of surface coating on the biocompatibility and in vivo MRI detection of iron oxide nanoparticles after intrapulmonary administration. Nanotoxicology 9:825–834. https://doi.org/10.3109/17435390.2014.980450

    Article  CAS  PubMed  Google Scholar 

  9. Alalaiwe A (2019) The clinical pharmacokinetics impact of medical nanometals on drug delivery system. Nanomed Nanotechnol Biol Med 17:47–61. https://doi.org/10.1016/j.nano.2019.01.004

    Article  CAS  Google Scholar 

  10. Ali A, Zafar H, Zia M, ul Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67. https://doi.org/10.2147/NSA.S99986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alwi R, Telenkov S, Mandelis A, Leshuk T, Gu F, Oladepo S, Michaelian K (2012) Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics. Biomed Opt Express 3:2500–2509. https://doi.org/10.1364/BOE.3.002500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anderson GJ, Frazer DM (2017) Current understanding of iron homeostasis. Am J Clin Nutr 106:1559S–1566S. https://doi.org/10.3945/ajcn.117.155804

    Article  PubMed  PubMed Central  Google Scholar 

  13. Andrade AL, Souza DM, Pereira MC, Fabris JD, Domingues RZ (2009) Synthesis and characterization of magnetic nanoparticles coated with silica through a sol-gel approach. Cerâmica 55:420–424. https://doi.org/10.1590/S0366-69132009000400013

    Article  CAS  Google Scholar 

  14. Ankamwar B, Lai TC, Huang JH, Liu RS, Hsiao M, Chen CH, Hwu YK (2010) Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology 21:75102. https://doi.org/10.1088/0957-4484/21/7/075102

    Article  CAS  PubMed  Google Scholar 

  15. Ansari SAMK, Ficiarà E, Ruffinatti FA, Stura I, Argenziano M, Abollino O, Cavalli R, Guiot C, D’Agata F, D’Agata F (2019) Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials (Basel) 12:465. https://doi.org/10.3390/ma12030465

    Article  CAS  Google Scholar 

  16. Arami H, Khandhar A, Liggitt D, Krishnan KM (2015) In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 44:8576–8607. https://doi.org/10.1039/C5CS00541H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Askri D, Cunin V, Béal D, Berthier S, Chovelon B, Arnaud J, Rachidi W, Sakly M, Amara S, Sève M, Lehmann SG (2019) Investigating the toxic effects induced by iron oxide nanoparticles on neuroblastoma cell line: an integrative study combining cytotoxic, genotoxic and proteomic tools. Nanotoxicology 13:1021–1040. https://doi.org/10.1080/17435390.2019.1621399

    Article  CAS  PubMed  Google Scholar 

  18. Astanina K, Simon Y, Cavelius C, Petry S, Kraegeloh A, Kiemer AK (2014) Superparamagnetic iron oxide nanoparticles impair endothelial integrity and inhibit nitric oxide production. Acta Biomater 10:4896–4911. https://doi.org/10.1016/j.actbio.2014.07.027

    Article  CAS  PubMed  Google Scholar 

  19. Auffan M, Decome L, Rose J, Orsiere T, De Meo M, Briois V, Chaneac C, Olivi L, Berge-lefranc J, Botta A, Wiesner MR, Bottero J (2006) In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: a physicochemical and cyto-genotoxical study. Environ Sci Technol 40:4367–4373. https://doi.org/10.1021/es060691k

    Article  CAS  PubMed  Google Scholar 

  20. Augustin E, Czubek B, Nowicka AM, Kowalczyk A, Stojek Z, Mazerska Z (2016) Improved cytotoxicity and preserved level of cell death induced in colon cancer cells by doxorubicin after its conjugation with iron-oxide magnetic nanoparticles. Toxicol Vitro 33:45–53. https://doi.org/10.1016/j.tiv.2016.02.009

    Article  CAS  Google Scholar 

  21. Avlasevich SL, Bryce SM, Cairns SE, Dertinger SD (2006) In vitro micronucleus scoring by flow cytometry: differential staining of micronuclei versus apoptotic and necrotic chromatin enhances assay reliability. Environ Mol Mutagen 47:56–66. https://doi.org/10.1002/em.20170

    Article  CAS  PubMed  Google Scholar 

  22. Babay S, Mhiri T, Toumi M (2015) Synthesis, structural and spectroscopic characterizations of maghemite γ-Fe2O3 prepared by one-step coprecipitation route. J Mol Struct 1085:286–293. https://doi.org/10.1016/j.molstruc.2014.12.067

    Article  CAS  Google Scholar 

  23. Baber O, Jang M, Barber D, Powers K (2011) Amorphous silica coatings on magnetic nanoparticles enhance stability and reduce toxicity to in vitro BEAS-2B cells. Inhal Toxicol 23:532–543. https://doi.org/10.3109/08958378.2011.592869

    Article  CAS  PubMed  Google Scholar 

  24. Banerji B, Pramanik SK, Mandal S, Maiti NC, Chaudhuri K (2012) Synthesis, characterization and cytotoxicity study of magnetic (Fe3O4) nanoparticles and their drug conjugate. RSC Adv 2:2493. https://doi.org/10.1039/c2ra01118b

    Article  CAS  Google Scholar 

  25. Bao Y, Wen T, Samia ACS, Khandhar A, Krishnan KM (2015) Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. J Mater Sci 51:513–553. https://doi.org/10.1007/s10853-015-9324-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barker RA, Cicchetti F (2014) Neurodegenerative disorders: the glia way forward. Front Pharmacol 5:157. https://doi.org/10.3389/fphar.2014.00157

    Article  PubMed  PubMed Central  Google Scholar 

  27. Basinas I, Jiménez AS, Galea KS, Van Tongeren M, Hurley F, van Tongeren M, Hurley F (2018) A systematic review of the routes and forms of exposure to engineered nanomaterials. Ann Work Expo Health 62:639–662. https://doi.org/10.1093/annweh/wxy048

    Article  CAS  PubMed  Google Scholar 

  28. Berry CC, Wells S, Charles S, Aitchison G, Curtis ASG (2004) Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 25:5405–5413. https://doi.org/10.1016/j.biomaterials.2003.12.046

    Article  CAS  PubMed  Google Scholar 

  29. Bhattacharya K, Davoren M, Boertz J, Schins RP, Hoffmann E, Dopp E (2009) Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part Fibre Toxicol 6:17. https://doi.org/10.1186/1743-8977-6-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhattacharya D, Das M, Mishra D, Banerjee I, Sahu SK, Maiti TK, Pramanik P (2011) Folate receptor targeted, carboxymethyl chitosan functionalized iron oxide nanoparticles: a novel ultradispersed nanoconjugates for bimodal imaging. Nanoscale 3:1653–1662. https://doi.org/10.1039/c0nr00821d

    Article  CAS  PubMed  Google Scholar 

  31. Bhattacharya K, Hoffmann E, Schins RFP, Boertz J, Prantl EM, Alink GM, Byrne HJ, Kuhlbusch TAJ, Rahman Q, Wiggers H, Schulz C, Dopp E (2012) Comparison of micro- and nanoscale Fe+3-containing (hematite) particles for their toxicological properties in human lung cells in vitro. Toxicol Sci 126:173–182. https://doi.org/10.1093/toxsci/kfs014

    Article  CAS  PubMed  Google Scholar 

  32. Bhattacharya A, Kaushik DK, Lozinski BM, Yong VW (2020) Beyond barrier functions: roles of pericytes in homeostasis and regulation of neuroinflammation. J Neurosci Res 98:jnr.24715. https://doi.org/10.1002/jnr.24715

    Article  CAS  Google Scholar 

  33. Bigini P, Diana V, Barbera S, Fumagalli E, Micotti E, Sitia L, Paladini A, Bisighini C, De Grada L, Coloca L, Colombo L, Manca P, Bossolasco P, Malvestiti F, Fiordaliso F, Forloni G, Morbidelli M, Salmona M, Giardino D, Mennini T, Moscatelli D, Silani V, Cova L (2012) Longitudinal tracking of human fetal cells labeled with super paramagnetic iron oxide nanoparticles in the brain of mice with motor neuron disease. PLoS One 7:e32326. https://doi.org/10.1371/journal.pone.0032326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bjørnerud A, Johansson L (2004) The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system. NMR Biomed 17:465–477. https://doi.org/10.1002/nbm.904

    Article  PubMed  Google Scholar 

  35. Blanco-Andujar C, Walter A, Cotin G, Bordeianu C, Mertz D, Felder-Flesch D, Begin-Colin S (2016) Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine 11:1889–1910. https://doi.org/10.2217/nnm-2016-5001

    Article  CAS  PubMed  Google Scholar 

  36. Bloemen M, Brullot W, Luong TT, Geukens N, Gils A, Verbiest T (2012) Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications. J Nanopart Res 14:1100. https://doi.org/10.1007/s11051-012-1100-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387. https://doi.org/10.1007/s11095-016-1958-5

    Article  CAS  PubMed  Google Scholar 

  38. Bourrinet P, Bengele HH, Bonnemain B, Dencausse A, Idee J-M, Jacobs PM, Lewis JM (2006) Preclinical safety and pharmacokinetic profile of Ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Investig Radiol 41:313–324. https://doi.org/10.1097/01.rli.0000197669.80475.dd

    Article  CAS  Google Scholar 

  39. Boyes WK, Thornton BLM, Al-Abed SR, Andersen CP, Bouchard DC, Burgess RM, Hubal EAC, Ho KT, Hughes MF, Kitchin K, Reichman JR, Rogers KR, Ross JA, Rygiewicz PT, Scheckel KG, Thai S-F, Zepp RG, Zucker RM (2017) A comprehensive framework for evaluating the environmental health and safety implications of engineered nanomaterials. Crit Rev Toxicol 47:771–814. https://doi.org/10.1080/10408444.2017.1328400

    Article  Google Scholar 

  40. Bradley EL, Castle L, Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol 22:604–610. https://doi.org/10.1016/j.tifs.2011.01.002

    Article  CAS  Google Scholar 

  41. Braeuer AU, Neubert J, Wagner S, Kiwit J, Glumm J (2015) New findings about iron oxide nanoparticles and their different effects on murine primary brain cells. Int J Nanomedicine 10:2033. https://doi.org/10.2147/IJN.S74404

    Article  CAS  Google Scholar 

  42. Briceño S, Hernandez AC, Sojo J, Lascano L, Gonzalez G (2017) Degradation of magnetite nanoparticles in biomimetic media. J Nanopart Res 19:140. https://doi.org/10.1007/s11051-017-3800-3

    Article  CAS  Google Scholar 

  43. Bryce SM, Bemis JC, Avlasevich SL, Dertinger SD (2007) In vitro micronucleus assay scored by flow cytometry provides a comprehensive evaluation of cytogenetic damage and cytotoxicity. Mutat Res Genet Toxicol Environ Mutagen 630:78–91. https://doi.org/10.1016/j.mrgentox.2007.03.002

    Article  CAS  Google Scholar 

  44. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71. https://doi.org/10.1116/1.2815690

    Article  PubMed  Google Scholar 

  45. Cabrera-García A, Checa-Chavarria E, Pacheco-Torres J, Bernabeu-Sanz Á, Vidal-Moya A, Rivero-Buceta E, Sastre G, Fernández E, Botella P (2018) Engineered contrast agents in a single structure for: T1-T2 dual magnetic resonance imaging. Nanoscale 10:6349–6360. https://doi.org/10.1039/c7nr07948f

    Article  CAS  PubMed  Google Scholar 

  46. Cai J, Miao YQ, Yu BZ, Ma P, Li L, Fan HM (2017) Large-scale, facile transfer of oleic acid-stabilized iron oxide nanoparticles to the aqueous phase for biological applications. Langmuir 33:1662–1669. https://doi.org/10.1021/acs.langmuir.6b03360

    Article  CAS  PubMed  Google Scholar 

  47. Cao Z, Liao Q, Su M, Huang K, Jin J, Cao D (2019) AKT and ERK dual inhibitors: the way forward? Cancer Lett 459:30–40. https://doi.org/10.1016/j.canlet.2019.05.025

    Article  CAS  PubMed  Google Scholar 

  48. Capjak I, Goreta SŠ, Jurašin DD, Vrček IV (2017) How protein coronas determine the fate of engineered nanoparticles in biological environment. Arh Hig Rada Toksikol 68:245–253. https://doi.org/10.1515/aiht-2017-68-3054

    Article  CAS  PubMed  Google Scholar 

  49. Chang X, Li J, Niu S, Xue Y, Tang M (2020) Neurotoxicity of metal-containing nanoparticles and implications in glial cells. J Appl Toxicol jat.4037:1–17. https://doi.org/10.1002/jat.4037

    Article  CAS  Google Scholar 

  50. Chen B, Wang F, Zhang W, Wang X, Senthilkumar R, Qiao L (2015) Inducing cell cycle arrest and apoptosis by dimercaptosuccinic acid modified Fe3O4 magnetic nanoparticles combined with nontoxic concentration of bortezomib and gambogic acid in RPMI-8226 cells. Int J Nanomedicine 10:3275. https://doi.org/10.2147/IJN.S80795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen D, Monteiro-Riviere NA, Zhang LW (2017) Intracellular imaging of quantum dots, gold, and iron oxide nanoparticles with associated endocytic pathways. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9:1–19. https://doi.org/10.1002/wnan.1419

    Article  CAS  Google Scholar 

  52. Cheng Z, Zhang J, Liu H, Li Y, Zhao Y, Yang E (2010) Central nervous system penetration for small molecule therapeutic agents does not increase in multiple sclerosis- and Alzheimer’s disease-related animal models despite reported blood-brain barrier disruption. Drug Metab Dispos 38:1355–1361. https://doi.org/10.1124/dmd.110.033324

    Article  CAS  PubMed  Google Scholar 

  53. Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin F-H, Qoronfleh MW (2019) Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 23:20. https://doi.org/10.1186/s40824-019-0166-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Choudhury H, Gorain B, Pandey M, Khurana RK, Kesharwani P (2019) Strategizing biodegradable polymeric nanoparticles to cross the biological barriers for cancer targeting. Int J Pharm 565:509–522. https://doi.org/10.1016/j.ijpharm.2019.05.042

    Article  CAS  PubMed  Google Scholar 

  55. Cicha I, Scheffler L, Ebenau A, Lyer S, Alexiou C, Goppelt-Struebe M (2015) Mitoxantrone-loaded superparamagnetic iron oxide nanoparticles as drug carriers for cancer therapy: uptake and toxicity in primary human tubular epithelial cells. Nanotoxicology 5390:1–10. https://doi.org/10.3109/17435390.2015.1095364

    Article  CAS  Google Scholar 

  56. Coccini T, Caloni F, Ramírez Cando LJ, De Simone U (2017) Cytotoxicity and proliferative capacity impairment induced on human brain cell cultures after short- and long-term exposure to magnetite nanoparticles. J Appl Toxicol 37:361–373. https://doi.org/10.1002/jat.3367

    Article  CAS  PubMed  Google Scholar 

  57. Colognato R, Park MVDZ, Wick P, De Jong WH (2012) Interactions with the human body. In: Adverse effects of engineered nanomaterials. Elsevier, pp 3–24. https://doi.org/10.1016/B978-0-12-386940-1.00001-5

    Chapter  Google Scholar 

  58. Coricovac D-E, Moacă E-A, Pinzaru I, Cîtu C, Soica C, Mihali C-V, Păcurariu C, Tutelyan VA, Tsatsakis A, Dehelean C-A (2017) Biocompatible colloidal suspensions based on magnetic iron oxide nanoparticles: synthesis, characterization and toxicological profile. Front Pharmacol 8:154. https://doi.org/10.3389/fphar.2017.00154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Costa C, Brandão F, Bessa MJMJ, Costa S, Valdiglesias V, Kiliç G, Fernández-Bertólez N, Quaresma P, Pereira E, Pásaro E, Laffon B, Teixeira JPJP (2016) In vitro cytotoxicity of superparamagnetic iron oxide nanoparticles on neuronal and glial cells. Evaluation of nanoparticle interference with viability tests. J Appl Toxicol 36:361–372. https://doi.org/10.1002/jat.3213

    Article  CAS  PubMed  Google Scholar 

  60. Couto D, Sousa R, Andrade L, Leander M, Lopez-Quintela MA, Rivas J, Freitas P, Lima M, Porto G, Porto B, Carvalho F, Fernandes E (2015) Polyacrylic acid coated and non-coated iron oxide nanoparticles are not genotoxic to human T lymphocytes. Toxicol Lett 234:67–73. https://doi.org/10.1016/j.toxlet.2015.02.010

    Article  CAS  PubMed  Google Scholar 

  61. Cromer Berman SM, Kshitiz CJ, Wang CJ, Orukari I, Levchenko A, Bulte JWM, Walczak P (2013) Cell motility of neural stem cells is reduced after SPIO-labeling, which is mitigated after exocytosis. Magn Reson Med 69:255–262. https://doi.org/10.1002/mrm.24216

    Article  CAS  PubMed  Google Scholar 

  62. D’Agata F, Ruffinatti FA, Boschi S, Stura I, Rainero I, Abollino O, Cavalli R, Guiot C (2018) Magnetic nanoparticles in the central nervous system: targeting principles, applications and safety issues. Molecules 23:1–25. https://doi.org/10.3390/molecules23010009

    Article  CAS  Google Scholar 

  63. Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T (2019) Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 138:302–325. https://doi.org/10.1016/j.addr.2019.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dayem AA, Hossain MK, Lee SB, Kim K, Saha SK, Yang GM, Choi HY, Cho SG (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 18:1–21. https://doi.org/10.3390/ijms18010120

    Article  CAS  Google Scholar 

  65. De Bock M, Decrock E, Wang N, Bol M, Vinken M, Bultynck G, Leybaert L (2014) The dual face of connexin-based astroglial Ca2+communication: a key player in brain physiology and a prime target in pathology. Biochim Biophys Acta, Mol Cell Res 1843:2211–2232. https://doi.org/10.1016/j.bbamcr.2014.04.016

    Article  CAS  PubMed  Google Scholar 

  66. de Oliveira GMT, Kist LW, Pereira TCB, Bortolotto JW, Paquete FL, de Oliveira EMN, Leite CE, Bonan CD, de Souza Basso NR, Papaleo RM, Bogo MR (2014) Transient modulation of acetylcholinesterase activity caused by exposure to dextran-coated iron oxide nanoparticles in brain of adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 162:77–84. https://doi.org/10.1016/j.cbpc.2014.03.010

    Article  CAS  PubMed  Google Scholar 

  67. Debia M, Bakhiyi B, Ostiguy C, Verbeek JH, Brouwer DH, Murashov V (2016) A systematic review of reported exposure to engineered nanomaterials. Ann Occup Hyg 60:916–935. https://doi.org/10.1093/annhyg/mew041

    Article  CAS  PubMed  Google Scholar 

  68. Deng M, Huang Z, Zou Y, Yin G, Liu J, Gu J (2014) Fabrication and neuron cytocompatibility of iron oxide nanoparticles coated with silk-fibroin peptides. Colloids Surf B Biointerfaces 116:465–471. https://doi.org/10.1016/j.colsurfb.2014.01.021

    Article  CAS  PubMed  Google Scholar 

  69. Di Bona K, Xu Y, Gray M, Fair D, Hayles H, Milad L, Montes A, Sherwood J, Bao Y, Rasco J (2015) Short- and long-term effects of prenatal exposure to iron oxide nanoparticles: influence of surface charge and dose on developmental and reproductive toxicity. Int J Mol Sci 16:30251–30268. https://doi.org/10.3390/ijms161226231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dilnawaz F, Sahoo SK (2015) Therapeutic approaches of magnetic nanoparticles for the central nervous system. Drug Discov Today 20:1256–1264. https://doi.org/10.1016/j.drudis.2015.06.008

    Article  CAS  PubMed  Google Scholar 

  71. Dissanayake NM, Current KM, Obare SO (2015) Mutagenic effects of iron oxide nanoparticles on biological cells. Int J Mol Sci 16:23482–23516. https://doi.org/10.3390/ijms161023482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dobrovolskaia MA, Shurin M, Shvedova AA (2016) Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol 299:78–89. https://doi.org/10.1016/j.taap.2015.12.022

    Article  CAS  PubMed  Google Scholar 

  73. Drasler B, Vanhecke D, Rodriguez-Lorenzo L, Petri-Fink A, Rothen-Rutishauser B (2017) Quantifying nanoparticle cellular uptake: which method is best? Nanomedicine 12:1095–1099. https://doi.org/10.2217/nnm-2017-0071

    Article  CAS  PubMed  Google Scholar 

  74. Du S, Li J, Du C, Huang Z, Chen G, Yan W (2017) Overendocytosis of superparamagnetic iron oxide particles increases apoptosis and triggers autophagic cell death in human osteosarcoma cell under a spinning magnetic field. Oncotarget 8:9410–9424. https://doi.org/10.18632/oncotarget.14114

    Article  PubMed  Google Scholar 

  75. Duan J, Dong J, Zhang T, Su Z, Ding J, Zhang Y, Mao X (2014) Polyethyleneimine-functionalized iron oxide nanoparticles for systemic siRNA delivery in experimental arthritis. Nanomedicine 9:789–801. https://doi.org/10.2217/nnm.13.217

    Article  CAS  PubMed  Google Scholar 

  76. Dulińska-Litewka J, Łazarczyk A, Hałubiec P, Szafrański O, Karnas K, Karewicz A (2019) Superparamagnetic iron oxide nanoparticles—current and prospective medical applications. Materials (Basel) 12:617. https://doi.org/10.3390/ma12040617

    Article  CAS  Google Scholar 

  77. Dwane S, Durack E, Kiely PA (2013) Optimising parameters for the differentiation of SH-SY5Y cells to study cell adhesion and cell migration. BMC Res Notes 6:366. https://doi.org/10.1186/1756-0500-6-366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dwivedi S, Siddiqui MA, Farshori NN, Ahamed M, Musarrat J, Al-Khedhairy AA (2014) Synthesis, characterization and toxicological evaluation of iron oxide nanoparticles in human lung alveolar epithelial cells. Colloids Surf B Biointerfaces 122:209–215. https://doi.org/10.1016/j.colsurfb.2014.06.064

    Article  CAS  PubMed  Google Scholar 

  79. Easo SL, Mohanan PV (2015) In vitro hematological and in vivo immunotoxicity assessment of dextran stabilized iron oxide nanoparticles. Colloids Surf B Biointerfaces 134:122–130. https://doi.org/10.1016/j.colsurfb.2015.06.046

    Article  CAS  PubMed  Google Scholar 

  80. Easo SL, Mohanan PV (2016) Toxicological evaluation of dextran stabilized iron oxide nanoparticles in human peripheral blood lymphocytes. Biointerphases 11:04B302. https://doi.org/10.1116/1.4962268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eid R, Arab NTT, Greenwood MT (2017) Iron mediated toxicity and programmed cell death: a review and a re-examination of existing paradigms. Biochim Biophys Acta, Mol Cell Res 1864:399–430. https://doi.org/10.1016/j.bbamcr.2016.12.002

    Article  CAS  Google Scholar 

  82. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137. https://doi.org/10.1016/j.addr.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  83. Elzoghby AO, Hemasa AL, Freag MS (2016) Hybrid protein-inorganic nanoparticles: from tumor-targeted drug delivery to cancer imaging. J Control Release 243:303–322. https://doi.org/10.1016/j.jconrel.2016.10.023

    Article  CAS  PubMed  Google Scholar 

  84. Estelrich J, Escribano E, Queralt J, Busquets MA (2015) Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 16:8070–8101. https://doi.org/10.3390/ijms16048070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Estevanato L, Cintra D, Baldini N, Portilho F, Barbosa L, Martins O, Lacava B, Miranda-Vilela AL, Tedesco AC, Báo S, Morais PC, Lacava ZGM (2011) Preliminary biocompatibility investigation of magnetic albumin nanosphere designed as a potential versatile drug delivery system. Int J Nanomedicine 6:1709–1717. https://doi.org/10.2147/IJN.S21323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fenech M (2008) The micronucleus assay determination of chromosomal level DNA damage. In: Methods in molecular biology (Clifton, N.J.). Springer, Cham, pp 185–216. https://doi.org/10.1007/978-1-59745-548-0_12

    Chapter  Google Scholar 

  87. Fernández-Bertólez N, Costa C, Brandão F, Kiliç G, Duarte JAJA, Teixeira JPJP, Pásaro E, Valdiglesias V, Laffon B (2018a) Toxicological assessment of silica-coated iron oxide nanoparticles in human astrocytes. Food Chem Toxicol 118:13–23. https://doi.org/10.1016/j.fct.2018.04.058

    Article  CAS  PubMed  Google Scholar 

  88. Fernández-Bertólez N, Costa C, Brandão F, Kiliç G, Teixeira JP, Pásaro E, Laffon B, Valdiglesias V (2018b) Neurotoxicity assessment of oleic acid-coated iron oxide nanoparticles in SH-SY5Y cells. Toxicology 406–407:81–91. https://doi.org/10.1016/j.tox.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  89. Fernández-Bertólez N, Costa C, Bessa MJ, Park M, Carriere M, Dussert F, Teixeira JP, Pásaro E, Laffon B, Valdiglesias V (2019a) Assessment of oxidative damage induced by iron oxide nanoparticles on different nervous system cells. Mutat Res Toxicol Environ Mutagen 845:402989. https://doi.org/10.1016/j.mrgentox.2018.11.013

    Article  CAS  Google Scholar 

  90. Fernández-Bertólez N, Costa C, Brandão F, Duarte JA, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B (2019b) Evaluation of cytotoxicity and genotoxicity induced by oleic acid-coated iron oxide nanoparticles in human astrocytes. Environ Mol Mutagen 60:816–829. https://doi.org/10.1002/em.22323

    Article  CAS  PubMed  Google Scholar 

  91. Forest V, Vergnon JM, Pourchez J (2017) Biological monitoring of inhaled nanoparticles in patients: an appealing approach to study causal link between human respiratory pathology and exposure to nanoparticles. Chem Res Toxicol 30:1655–1660. https://doi.org/10.1021/acs.chemrestox.7b00192

    Article  CAS  PubMed  Google Scholar 

  92. Frank JA, Zywicke H, Jordan E, Mitchell J, Lewis BK, Miller B, Bryant LH, Bulte JW (2002) Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 9:S484–S487. https://doi.org/10.1016/S1076-6332(03)80271-4

    Article  PubMed  Google Scholar 

  93. Frantellizzi V, Conte M, Pontico M, Pani A, Pani R, De Vincentis G (2020) New frontiers in molecular imaging with superparamagnetic iron oxide nanoparticles (SPIONs): efficacy, toxicity, and future applications. Nucl Med Mol Imaging 54:65–80. https://doi.org/10.1007/s13139-020-00635-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fratila RM, Rivera-Fernández S, de la Fuente JM (2015) Shape matters: synthesis and biomedical applications of high aspect ratio magnetic nanomaterials. Nanoscale 7:8233–8260. https://doi.org/10.1039/c5nr01100k

    Article  CAS  PubMed  Google Scholar 

  95. Freitas MLL, Silva LP, Azevedo RB, Garcia VAP, Lacava LM, Grisólia CK, Lucci CM, Morais PC, Da Silva MF, Buske N, Curi R, Lacava ZGM (2002) A double-coated magnetite-based magnetic fluid evaluation by cytometry and genetic tests. J Magn Magn Mater 252:396–398. https://doi.org/10.1016/S0304-8853(02)00655-8

    Article  CAS  Google Scholar 

  96. Fröhlich E, Meindl C, Roblegg E, Griesbacher A, Pieber TR (2012) Cytotoxity of nanoparticles is influenced by size, proliferation and embryonic origin of the cells used for testing. Nanotoxicology 6:424–439. https://doi.org/10.3109/17435390.2011.586478

    Article  CAS  PubMed  Google Scholar 

  97. Gaharwar US, Meena R, Rajamani P (2017) Iron oxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in lymphocytes. J Appl Toxicol 37:1232–1244. https://doi.org/10.1002/jat.3485

    Article  CAS  PubMed  Google Scholar 

  98. Galaris D, Barbouti A, Pantopoulos K (2019) Iron homeostasis and oxidative stress: an intimate relationship. Biochim Biophys Acta, Mol Cell Res 1866:118535. https://doi.org/10.1016/j.bbamcr.2019.118535

    Article  CAS  Google Scholar 

  99. Garcia GJM, Schroeter JD, Kimbell JS (2015) Olfactory deposition of inhaled nanoparticles in humans. Inhal Toxicol 27:1091–7691. https://doi.org/10.3109/08958378.2015.1066904

    Article  CAS  Google Scholar 

  100. Ge Y, Zhang Y, He S, Nie F, Teng G, Gu N (2009) Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscale Res Lett 4:287–295. https://doi.org/10.1007/s11671-008-9239-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Geppert M, Hohnholt M, Gaetjen L, Grunwald I, Bäumer M, Dringen R (2009) Accumulation of iron oxide nanoparticles by cultured brain astrocytes. J Biomed Nanotechnol 5:285–293. https://doi.org/10.1016/j.neuint.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  102. Geppert M, Hohnholt MC, Thiel K, Nürnberger S, Grunwald I, Rezwan K, Dringen R (2011) Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes. Nanotechnology 22:145101. https://doi.org/10.1088/0957-4484/22/14/145101

    Article  CAS  PubMed  Google Scholar 

  103. Ghosh S, Ghosh I, Chakrabarti M, Mukherjee A (2020) Genotoxicity and biocompatibility of superparamagnetic iron oxide nanoparticles: influence of surface modification on biodistribution, retention, DNA damage and oxidative stress. Food Chem Toxicol 136:110989. https://doi.org/10.1016/j.fct.2019.110989

    Article  CAS  PubMed  Google Scholar 

  104. Ginzburg VV, Balijepalli S (2007) Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. Nano Lett 7:3716–3722. https://doi.org/10.1021/nl072053l

    Article  CAS  PubMed  Google Scholar 

  105. Gkagkanasiou M, Ploussi A, Gazouli M, Efstathopoulos EP (2016) USPIO-enhanced MRI neuroimaging: a review. J Neuroimaging 26:161–168. https://doi.org/10.1111/jon.12318

    Article  PubMed  Google Scholar 

  106. Gomaa IO, Abdel Kader MH, Salah Eldin T, Heikal OA (2011) Evaluation of in vitro mutagenicity and genotoxicity of magnetite nanoparticles. Drug Discov Ther 7:116–123. https://doi.org/10.5582/ddt.2013.v7.3.116

    Article  CAS  Google Scholar 

  107. Gonzalez L, Kirsch-Volders M (2016) Biomonitoring of genotoxic effects for human exposure to nanomaterials: the challenge ahead. Mutat Res Rev Mutat Res 768:14–26. https://doi.org/10.1016/j.mrrev.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  108. Gormley AJ, Ghandehari H (2009) Evaluation of toxicity of nanostructures in biological systems. In: Nanotoxicity. Wiley, Chichester, pp 115–159. https://doi.org/10.1002/9780470747803.ch7

    Chapter  Google Scholar 

  109. Grand View Research Inc. (2019) Report GVR-3-68038-765-0 (2019) Magnetite nanoparticles market size, share & trends analysis report by application (bio-medical, electronics, energy, wastewater treatment), by region, and segment forecasts, 2019–2025. https://www.grandviewresearch.com/industry-analysis/magnetite-nanoparticles-market

  110. Guichard Y, Schmit J, Darne C, Gaté L, Goutet M, Rousset D, Rastoix O, Wrobel R, Witschger O, Martin A, Fierro V, Binet S (2012) Cytotoxicity and genotoxicity of nanosized and microsized titanium dioxide and iron oxide particles in Syrian hamster embryo cells. Ann Occup Hyg 56:631–644. https://doi.org/10.1093/annhyg/mes006

    Article  CAS  PubMed  Google Scholar 

  111. Gul S, Khan SB, Rehman IU, Khan MA, Khan MI (2019) A comprehensive review of magnetic nanomaterials modern day theranostics. Front Mater 6:179. https://doi.org/10.3389/fmats.2019.00179

    Article  Google Scholar 

  112. Han D-W, Hong SC, Lee JH, Lee J, Kim HY, Park JY, Cho LJ, Han D-W (2011) Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups. Int J Nanomedicine 6:3219. https://doi.org/10.2147/IJN.S26355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hanini A, Schmitt A, Kacem K, Chau F, Ammar S, Gavard J (2011) Evaluation of iron oxide nanoparticle biocompatibility. Int J Nanomedicine 6:787–794. https://doi.org/10.2147/IJN.S17574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hanot C, Choi Y, Anani T, Soundarrajan D, David A (2015) Effects of iron-oxide nanoparticle surface chemistry on uptake kinetics and cytotoxicity in CHO-K1 cells. Int J Mol Sci 17:54. https://doi.org/10.3390/ijms17010054

    Article  CAS  PubMed Central  Google Scholar 

  115. Hildebrand H, Kühnel D, Potthoff A, Mackenzie K, Springer A, Schirmer K (2010) Evaluating the cytotoxicity of palladium/magnetite nano-catalysts intended for wastewater treatment. Environ Pollut 158:65–73. https://doi.org/10.1016/j.envpol.2009.08.021

    Article  CAS  PubMed  Google Scholar 

  116. Hoet PHM, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles – known and unknown health risks. J Nanobiotechnol 2:1–15. https://doi.org/10.1186/1477-3155-2-12

    Article  CAS  Google Scholar 

  117. Hohnholt MC, Dringen R (2013) Uptake and metabolism of iron and iron oxide nanoparticles in brain astrocytes. Biochem Soc Trans 41:1588–1592. https://doi.org/10.1042/bst20130114

    Article  CAS  PubMed  Google Scholar 

  118. Hohnholt M, Geppert M, Dringen R (2010) Effects of iron chelators, iron salts, and iron oxide nanoparticles on the proliferation and the iron content of oligodendroglial OLN-93 cells. Neurochem Res 35:1259–1268. https://doi.org/10.1007/s11064-010-0184-5

    Article  CAS  PubMed  Google Scholar 

  119. Hohnholt MC, Geppert M, Dringen R (2011) Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells. Acta Biomater 7:3946–3954. https://doi.org/10.1016/j.actbio.2011.06.052

    Article  CAS  PubMed  Google Scholar 

  120. Hohnholt MC, Geppert M, Luther EM, Petters C, Bulcke F, Dringen R (2013) Handling of iron oxide and silver nanoparticles by astrocytes. Neurochem Res 38:227–239. https://doi.org/10.1007/s11064-012-0930-y

    Article  CAS  PubMed  Google Scholar 

  121. Hoskins C, Cuschieri A, Wang L (2012) The cytotoxicity of polycationic iron oxide nanoparticles: common endpoint assays and alternative approaches for improved understanding of cellular response mechanism. J Nanobiotechnol 10:15. https://doi.org/10.1186/1477-3155-10-15

    Article  CAS  Google Scholar 

  122. Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ (2019) Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res 15:1–18. https://doi.org/10.1016/j.jare.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  123. Howarth C (2014) The contribution of astrocytes to the regulation of cerebral blood flow. Front Neurosci 8:1–9. https://doi.org/10.3389/fnins.2014.00103

    Article  Google Scholar 

  124. Huang S, Li C, Cheng Z, Fan Y, Yang P, Zhang C, Yang K, Lin J (2012) Magnetic Fe3O4@mesoporous silica composites for drug delivery and bioadsorption. J Colloid Interface Sci 376:312–321. https://doi.org/10.1016/j.jcis.2012.02.031

    Article  CAS  PubMed  Google Scholar 

  125. Huang Y-WW, Cambre M, Lee H-JJ (2017) The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int J Mol Sci 18:2702. https://doi.org/10.3390/ijms18122702

    Article  CAS  PubMed Central  Google Scholar 

  126. Im H-J, England CG, Feng L, Graves SA, Hernandez R, Nickles RJ, Liu Z, Lee DS, Cho SY, Cai W (2016) Accelerated blood clearance phenomenon reduces the passive targeting of pegylated nanoparticles in peripheral arterial disease. ACS Appl Mater Interfaces 8:17955–17963. https://doi.org/10.1021/acsami.6b05840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Imam SZ, Lantz-McPeak SM, Cuevas E, Rosas-Hernandez H, Liachenko S, Zhang Y, Sarkar S, Ramu J, Robinson BL, Jones Y, Gough B, Paule MG, Ali SF, Binienda ZK (2015) Iron oxide nanoparticles induce dopaminergic damage: in vitro pathways and in vivo imaging reveals mechanism of neuronal damage. Mol Neurobiol 52:913–926. https://doi.org/10.1007/s12035-015-9259-2

    Article  CAS  PubMed  Google Scholar 

  128. Joris F, Valdepérez D, Pelaz B, Soenen SJ, Manshian BB, Parak WJ, De Smedt SC, Raemdonck K (2016) The impact of species and cell type on the nanosafety profile of iron oxide nanoparticles in neural cells. J Nanobiotechnol 14:69. https://doi.org/10.1186/s12951-016-0220-y

    Article  CAS  Google Scholar 

  129. Jud C, Clift MJD, Petri-Fink A, Rothen-Rutishauser B (2013) Nanomaterials and the human lung: what is known and what must be deciphered to realise their potential advantages? Swiss Med Wkly 143:1–20. https://doi.org/10.4414/smw.2013.13758

    Article  CAS  Google Scholar 

  130. Kanwar JR, Sun X, Punj V, Sriramoju B, Mohan RR, Zhou S-F, Chauhan A, Kanwar RK (2012) Nanoparticles in the treatment and diagnosis of neurological disorders: untamed dragon with fire power to heal. Nanomed Nanotechnol Biol Med 8:399–414. https://doi.org/10.1016/j.nano.2011.08.006

    Article  CAS  Google Scholar 

  131. Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732. https://doi.org/10.1021/tx800064j

    Article  CAS  PubMed  Google Scholar 

  132. Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles – a comparison between nano- and micrometer size. Toxicol Lett 188:112–118. https://doi.org/10.1016/j.toxlet.2009.03.014

    Article  CAS  PubMed  Google Scholar 

  133. Karlsson HL, Di Bucchianico S, Collins AR, Dusinska M (2015) Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity? Environ Mol Mutagen 56:82–96. https://doi.org/10.1002/em.21933

    Article  CAS  PubMed  Google Scholar 

  134. Karmakar A, Zhang Q, Zhang Y (2014) Neurotoxicity of nanoscale materials. J Food Drug Anal 22:147–160. https://doi.org/10.1016/j.jfda.2014.01.012

    Article  CAS  PubMed  Google Scholar 

  135. Kaushik A, Jayant RD, Bhardwaj V, Nair M (2018) Personalized nanomedicine for CNS diseases. Drug Discov Today 23:1007–1015. https://doi.org/10.1016/j.drudis.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  136. Kavithaa K, Paulpandi M, Padma PR, Sumathi S (2016) Induction of intrinsic apoptotic pathway and cell cycle arrest: via baicalein loaded iron oxide nanoparticles as a competent nano-mediated system for triple negative breast cancer therapy. RSC Adv 6:64531–64543. https://doi.org/10.1039/c6ra11658b

    Article  CAS  Google Scholar 

  137. Kawabata H (2019) Transferrin and transferrin receptors update. Free Radic Biol Med 133:46–54. https://doi.org/10.1016/j.freeradbiomed.2018.06.037

    Article  CAS  PubMed  Google Scholar 

  138. Kenzaoui BH, Bernasconi CC, Guney-Ayra S, Juillerat-Jeanneret L (2012a) Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochem J 441:813–821. https://doi.org/10.1042/BJ20111252

    Article  CAS  Google Scholar 

  139. Kenzaoui BH, Bernasconi CC, Hofmann H, Juillerat-Jeanneret L (2012b) Evaluation of uptake and transport of ultrasmall superparamagnetic iron oxide nanoparticles by human brain-derived endothelial cells. Nanomedicine 7:39–53. https://doi.org/10.2217/nnm.11.85

    Article  CAS  PubMed  Google Scholar 

  140. Kermanizadeh A, Chauché C, Brown DM, Loft S, Møller P (2015) The role of intracellular redox imbalance in nanomaterial induced cellular damage and genotoxicity: a review. Environ Mol Mutagen 56:111–124. https://doi.org/10.1002/em.21926

    Article  CAS  PubMed  Google Scholar 

  141. Khan MI, Mohammad A, Patil G, Naqvi SAH, Chauhan LKS, Ahmad I (2012) Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 33:1477–1488. https://doi.org/10.1016/j.biomaterials.2011.10.080

    Article  CAS  PubMed  Google Scholar 

  142. Kiliç G, Costa C, Fernández-Bertólez N, Pásaro E, Teixeira JPJP, Laffon B, Valdiglesias V (2016) In vitro toxicity evaluation of silica-coated iron oxide nanoparticles in human SHSY5Y neuronal cells. Toxicol Res (Camb) 5:235–247. https://doi.org/10.1039/c6tx90013e

    Article  CAS  Google Scholar 

  143. Kim JS, Yoon T-J, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee J-K, Cho MH (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89:338–347. https://doi.org/10.1093/toxsci/kfj027

    Article  PubMed  Google Scholar 

  144. Kim Y, Kong SD, Chen L-H, Pisanic TR, Jin S, Shubayev VI (2013) In vivo nanoneurotoxicity screening using oxidative stress and neuroinflammation paradigms. Nanomed Nanotechnol Biol Med 9:1057–1066. https://doi.org/10.1016/j.nano.2013.05.002

    Article  CAS  Google Scholar 

  145. Kim J-H, Sanetuntikul J, Shanmugam S, Kim E (2015) Necrotic cell death caused by exposure to graphitic carbon-coated magnetic nanoparticles. J Biomed Mater Res A 103:2875–2887. https://doi.org/10.1002/jbm.a.35418

    Article  CAS  PubMed  Google Scholar 

  146. Könczöl M, Ebeling S, Goldenberg E, Treude F, Gminski R, Gieré R, Grobéty B, Rothen-Rutishauser B, Merfort I, Mersch-Sundermann V (2011) Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: role of ROS, JNK, and NF-κB. Chem Res Toxicol 24:1460–1475. https://doi.org/10.1021/tx200051s

    Article  CAS  PubMed  Google Scholar 

  147. Könczöl M, Weiss A, Stangenberg E, Gminski R, Garcia-Käufer M, Gieré R, Merfort I, Mersch-Sundermann V (2013) Cell-cycle changes and oxidative stress response to magnetite in A549 human lung cells. Chem Res Toxicol 26:693–702. https://doi.org/10.1021/tx300503q

    Article  CAS  PubMed  Google Scholar 

  148. Kong SD, Lee J, Ramachandran S, Eliceiri BP, Shubayev VI, Lal R, Jin S (2012) Magnetic targeting of nanoparticles across the intact blood-brain barrier. J Control Release 164:49–57. https://doi.org/10.1016/j.jconrel.2012.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kornberg T, Stueckle T, Antonini J, Rojanasakul Y, Castranova V, Yang Y, Wang L (2017) Potential toxicity and underlying mechanisms associated with pulmonary exposure to iron oxide nanoparticles: conflicting literature and unclear risk. Nanomaterials 7:307. https://doi.org/10.3390/nano7100307

    Article  CAS  PubMed Central  Google Scholar 

  150. Královec K, Havelek R, Kročová E, Kučírková L, Hauschke M, Bartáček J, Palarčík J, Sedlák M (2019) Silica coated iron oxide nanoparticles-induced cytotoxicity, genotoxicity and its underlying mechanism in human HK-2 renal proximal tubule epithelial cells. Mutat Res Genet Toxicol Environ Mutagen 844:35–45. https://doi.org/10.1016/j.mrgentox.2019.05.015

    Article  CAS  PubMed  Google Scholar 

  151. Kratzer I, Ek J, Stolp H (2020) The molecular anatomy and functions of the choroid plexus in healthy and diseased brain. Biochim Biophys Acta Biomembr 1862:183430. https://doi.org/10.1016/j.bbamem.2020.183430

    Article  CAS  PubMed  Google Scholar 

  152. Kumar M, Singh G, Arora V, Mewar S, Sharma U, Jagannathan NR, Sapra S, Dinda AK, Kharbanda S, Singh H (2012) Cellular interaction of folic acid conjugated superparamagnetic iron oxide nanoparticles and its use as contrast agent for targeted magnetic imaging of tumor cells. Int J Nanomedicine 7:3503–3516. https://doi.org/10.2147/IJN.S32694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kumari M, Rajak S, Singh SP, Kumari SI, Kumar PU, Murty USN, Mahboob M, Grover P, Rahman MF (2012) Repeated oral dose toxicity of iron oxide nanoparticles: biochemical and histopathological alterations in different tissues of rats. J Nanosci Nanotechnol 12:2149–2159. https://doi.org/10.1166/jnn.2012.5796

    Article  CAS  PubMed  Google Scholar 

  154. Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B (2011a) Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochim Biophys Acta Gen Subj 1810:361–373. https://doi.org/10.1016/j.bbagen.2010.04.007

    Article  CAS  Google Scholar 

  155. Kunzmann A, Andersson B, Vogt C, Feliu N, Ye F, Gabrielsson S, Toprak MS, Buerki-Thurnherr T, Laurent S, Vahter M, Krug H, Muhammed M, Scheynius A, Fadeel B (2011b) Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol Appl Pharmacol 253:81–93. https://doi.org/10.1016/j.taap.2011.03.011

    Article  CAS  PubMed  Google Scholar 

  156. Kwon D, Nho HW, Yoon TH (2014) X-ray and electron microscopy studies on the biodistribution and biomodification of iron oxide nanoparticles in Daphnia magna. Colloids Surf B Biointerfaces 122:384–389. https://doi.org/10.1016/j.colsurfb.2014.07.016

    Article  CAS  PubMed  Google Scholar 

  157. Lai DY (2015) Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials. Food Chem Toxicol 85:120–126. https://doi.org/10.1016/j.fct.2015.06.008

    Article  CAS  PubMed  Google Scholar 

  158. Lai X, Wei Y, Zhao H, Chen S, Bu X, Lu F, Qu D, Yao L, Zheng J, Zhang J (2015) The effect of Fe2O3 and ZnO nanoparticles on cytotoxicity and glucose metabolism in lung epithelial cells. J Appl Toxicol 35:651–664. https://doi.org/10.1002/jat.3128

    Article  CAS  PubMed  Google Scholar 

  159. Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M (2014) Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv 11:1449–1470. https://doi.org/10.1517/17425247.2014.924501

    Article  CAS  PubMed  Google Scholar 

  160. Lazaratos M, Karathanou K, Mainas E, Chatzigoulas A, Pippa N, Demetzos C, Cournia Z (2020) Coating of magnetic nanoparticles affects their interactions with model cell membranes. Biochim Biophys Acta Gen Subj 1864:129671. https://doi.org/10.1016/j.bbagen.2020.129671

    Article  CAS  PubMed  Google Scholar 

  161. Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S (2006) Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc 128:7383–7389. https://doi.org/10.1021/ja061529k

    Article  CAS  PubMed  Google Scholar 

  162. Lee JH, Ju JE, BIL K, Pak PJ, Choi EK, Lee HS, Chung N (2014) Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem 33:2759–2766. https://doi.org/10.1002/etc.2735

    Article  CAS  PubMed  Google Scholar 

  163. Lee SH, Lee DH, Jung H, Han Y-S, Kim T-H, Yang W (2015) Magnetic properties of SiO2-coated iron oxide nanoparticles studied by polarized small angle neutron scattering. Curr Appl Phys 15:915–919. https://doi.org/10.1016/j.cap.2015.04.003

    Article  Google Scholar 

  164. Li Y, Zhang H (2019) Fe3O4-based nanotheranostics for magnetic resonance imaging-synergized multifunctional cancer management. Nanomedicine 14:1493–1512. https://doi.org/10.2217/nnm-2018-0346

    Article  CAS  PubMed  Google Scholar 

  165. Li L, Mak KY, Shi J, Koon HK, Leung CH, Wong CM, Leung CW, Mak CSK, Chan NMM, Zhong W, Lin KW, Wu EX, Pong PWT (2012) Comparative in vitro cytotoxicity study on uncoated magnetic nanoparticles: effects on cell viability, cell morphology, and cellular uptake. J Nanosci Nanotechnol 12:9010–9017. https://doi.org/10.1166/jnn.2012.6755

    Article  CAS  PubMed  Google Scholar 

  166. Lin Z, Monteiro-Riviere NA, Riviere JE (2015) Pharmacokinetics of metallic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:189–217. https://doi.org/10.1002/wnan.1304

    Article  CAS  PubMed  Google Scholar 

  167. Liu N, Tang M (2020) Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles. J Appl Toxicol 40:16–36. https://doi.org/10.1002/jat.3817

    Article  CAS  PubMed  Google Scholar 

  168. Liu D, Wu W, Ling J, Wen S, Gu N, Zhang X (2011a) Effective PEGylation of iron oxide nanoparticles for high performance in vivo cancer imaging. Adv Funct Mater 21:1498–1504. https://doi.org/10.1002/adfm.201001658

    Article  CAS  Google Scholar 

  169. Liu Y, Chen Z, Wang J (2011b) Systematic evaluation of biocompatibility of magnetic Fe3O4 nanoparticles with six different mammalian cell lines. J Nanopart Res 13:199–212. https://doi.org/10.1007/s11051-010-0019-y

    Article  CAS  Google Scholar 

  170. Liu Y, Xia Q, Liu Y, Zhang S, Cheng F, Zhong Z, Wang L, Li H, Xiao K (2014) Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings. Nanotechnology 25:425101. https://doi.org/10.1088/0957-4484/25/42/425101

    Article  CAS  PubMed  Google Scholar 

  171. Lochhead JJ, Yang J, Ronaldson PT, Davis TP (2020) Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders. Front Physiol 11:914. https://doi.org/10.3389/fphys.2020.00914

    Article  PubMed  PubMed Central  Google Scholar 

  172. Loh JW, Saunders M, Lim LY (2012) Cytotoxicity of monodispersed chitosan nanoparticles against the Caco-2 cells. Toxicol Appl Pharmacol 262:273–282. https://doi.org/10.1016/j.taap.2012.04.037

    Article  CAS  PubMed  Google Scholar 

  173. Lojk J, Repas J, Veranič P, Bregar VB, Pavlin M (2020) Toxicity mechanisms of selected engineered nanoparticles on human neural cells in vitro. Toxicology 432:152364. https://doi.org/10.1016/j.tox.2020.152364

    Article  CAS  PubMed  Google Scholar 

  174. Loos C, Syrovets T, Musyanovych A, Mailänder V, Landfester K, Simmet T (2014) Amino-functionalized nanoparticles as inhibitors of mTOR and inducers of cell cycle arrest in leukemia cells. Biomaterials 35:1944–1953. https://doi.org/10.1016/j.biomaterials.2013.11.056

    Article  CAS  PubMed  Google Scholar 

  175. Lorenz C, Von Goetz N, Scheringer M, Wormuth M, Hungerbühler K (2011) Potential exposure of German consumers to engineered nanoparticles in cosmetics and personal care products. Nanotoxicology 5:12–29. https://doi.org/10.3109/17435390.2010.484554

    Article  CAS  PubMed  Google Scholar 

  176. Lovisolo D, Dionisi MA, Ruffinatti F, Distasi C (2018) Nanoparticles and potential neurotoxicity: focus on molecular mechanisms. AIMS Mol Sci 5:1–13. https://doi.org/10.3934/molsci.2018.1.1

    Article  CAS  Google Scholar 

  177. Luther EM, Petters C, Bulcke F, Kaltz A, Thiel K, Bickmeyer U, Dringen R (2013) Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells. Acta Biomater 9:8454–8465. https://doi.org/10.1016/j.actbio.2013.05.022

    Article  CAS  PubMed  Google Scholar 

  178. Ma Y, Chen T, Iqbal MZ, Yang F, Hampp N, Wu A, Luo L (2019) Applications of magnetic materials separation in biological nanomedicine. Electrophoresis 40:2011–2028. https://doi.org/10.1002/elps.201800401

    Article  CAS  PubMed  Google Scholar 

  179. MacHala L, Tuček J, Zbořil R (2011) Polymorphous transformations of nanometric iron(III) oxide: a review. Chem Mater 23:3255–3272. https://doi.org/10.1021/cm200397g

    Article  CAS  Google Scholar 

  180. Magdolenova Z, Rinna A, Fjellsbø L, Dusinska M (2011) Safety assessment of nanoparticles cytotoxicity and genotoxicity of metal nanoparticles in vitro. J Biomed Nanotechnol 7:20–21. https://doi.org/10.1166/jbn.2011.1180

    Article  CAS  Google Scholar 

  181. Magdolenova Z, Drlickova M, Henjum K, Rundén-Pran E, Tulinska J, Bilanicova D, Pojana G, Kazimirova A, Barancokova M, Kuricova M, Liskova A, Staruchova M, Ciampor F, Vavra I, Lorenzo Y, Collins A, Rinna A, Fjellsbø L, Volkovova K, Marcomini A, Amiry-Moghaddam M, Dusinska M (2015) Coating-dependent induction of cytotoxicity and genotoxicity of iron oxide nanoparticles. Nanotoxicology 9:44–56. https://doi.org/10.3109/17435390.2013.847505

    Article  CAS  PubMed  Google Scholar 

  182. Magro M, Vianello F (2019) Bare iron oxide nanoparticles: surface tunability for biomedical, sensing and environmental applications. Nano 9:1–20. https://doi.org/10.3390/nano9111608

    Article  CAS  Google Scholar 

  183. Mah LJ, El-Osta A, Karagiannis TC (2010) γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24:679–686. https://doi.org/10.1038/leu.2010.6

    Article  CAS  PubMed  Google Scholar 

  184. Mahaseth T, Kuzminov A (2017) Potentiation of hydrogen peroxide toxicity: from catalase inhibition to stable DNA-iron complexes. Mutat Res Rev Mutat Res 773:274–281. https://doi.org/10.1016/j.mrrev.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  185. Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, MZA R, Amin J (2013) Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18:7533–7548. https://doi.org/10.3390/molecules18077533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mahler GJ, Esch MB, Tako E, Southard TL, Archer SD, Glahn RP, Shuler ML (2012) Oral exposure to polystyrene nanoparticles affects iron absorption. Nat Nanotechnol 7:264–271. https://doi.org/10.1038/nnano.2012.3

    Article  CAS  PubMed  Google Scholar 

  187. Mahmoudi M, Simchi A, Imani M (2009a) Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles. J Phys Chem C 113:9573–9580. https://doi.org/10.1021/jp9001516

    Article  CAS  Google Scholar 

  188. Mahmoudi M, Simchi A, Imani M, Milani AS, Stroeve P (2009b) An in vitro study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: a new toxicity identification procedure. Nanotechnology 20:225104. https://doi.org/10.1088/0957-4484/20/22/225104

    Article  CAS  PubMed  Google Scholar 

  189. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103:317–324. https://doi.org/10.1007/s11060-010-0389-0

    Article  Google Scholar 

  190. Malhotra N, Lee J-S, Liman RAD, Ruallo JMS, Villaflores OB, Ger T-R, Hsiao C-D (2020) Potential toxicity of iron oxide magnetic nanoparticles: a review. Molecules 25:3159. https://doi.org/10.3390/molecules25143159

    Article  CAS  PubMed Central  Google Scholar 

  191. Malvindi MA, De Matteis V, Galeone A, Brunetti V, Anyfantis GC, Athanassiou A, Cingolani R, Pompa PP (2014) Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS One 9:e85835. https://doi.org/10.1371/journal.pone.0085835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Manickam V, Periyasamy M, Dhakshinamoorthy V, Panneerselvam L, Perumal E (2017) Recurrent exposure to ferric oxide nanoparticles alters myocardial oxidative stress, apoptosis and necrotic markers in male mice. Chem Biol Interact 278:54–64. https://doi.org/10.1016/j.cbi.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  193. Martinkova P, Brtnicky M, Kynicky J, Pohanka M (2018) Iron oxide nanoparticles: innovative tool in cancer diagnosis and therapy. Adv Healthc Mater 7:1700932. https://doi.org/10.1002/adhm.201700932

    Article  CAS  Google Scholar 

  194. Martirosyan A, Schneider YJ (2014) Engineered nanomaterials in food: implications for food safety and consumer health. Int J Environ Res Public Health 11:5720–5750. https://doi.org/10.3390/ijerph110605720

    Article  PubMed  PubMed Central  Google Scholar 

  195. Maynard AD, Warheit DB, Philbert MA (2011) The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 120:S109–S129. https://doi.org/10.1093/toxsci/kfq372

    Article  CAS  PubMed  Google Scholar 

  196. Mc Carthy DJ, Malhotra M, O’Mahony AM, Cryan JF, O’Driscoll CM (2015) Nanoparticles and the blood-brain barrier: advancing from in-vitro models towards therapeutic significance. Pharm Res 32:1161–1185. https://doi.org/10.1007/s11095-014-1545-6

    Article  CAS  PubMed  Google Scholar 

  197. McBain SC, Yiu HHP, Dobson J (2008) Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine 3:169–180. https://doi.org/10.2147/IJN.S1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. McDonald I, Sloan GC, Zijlstra AA, Matsunaga N, Matsuura M, Kraemer KE, Bernard-Salas J, Markwick AJ (2010) Rusty old stars: a source of the missing interstellar iron? Astrophys J 717:L92–L97. https://doi.org/10.1088/2041-8205/717/2/L92

    Article  CAS  Google Scholar 

  199. Mesárošová M, Kozics K, Bábelová A, Regendová E, Pastorek M, Vnuková D, Buliaková B, Rázga F, Gábelová A (2014) The role of reactive oxygen species in the genotoxicity of surface-modified magnetite nanoparticles. Toxicol Lett 226:303–313. https://doi.org/10.1016/j.toxlet.2014.02.025

    Article  CAS  PubMed  Google Scholar 

  200. Migliore L, Uboldi C, Di Bucchianico S, Coppedè F (2015) Nanomaterials and neurodegeneration. Environ Mol Mutagen 56:149–170. https://doi.org/10.1002/em.21931

    Article  CAS  PubMed  Google Scholar 

  201. Mitragotri S, Anderson DG, Chen X, Chow EK, Ho D, Kabanov AV, Karp JM, Kataoka K, Mirkin CA, Petrosko SH, Shi J, Stevens MM, Sun S, Teoh S, Venkatraman SS, Xia Y, Wang S, Gu Z, Xu C (2015) Accelerating the translation of nanomaterials in biomedicine. ACS Nano 9:6644–6654. https://doi.org/10.1021/acsnano.5b03569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Mohammadinejad R, Moosavi MA, Tavakol S, Vardar DÖ, Hosseini A, Rahmati M, Dini L, Hussain S, Mandegary A, Klionsky DJ (2019) Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy 15:4–33. https://doi.org/10.1080/15548627.2018.1509171

    Article  CAS  PubMed  Google Scholar 

  203. Mosayebi J, Kiyasatfar M, Laurent S (2017) Synthesis, functionalization, and design of magnetic nanoparticles for theranostic applications. Adv Healthc Mater 6:1700306. https://doi.org/10.1002/adhm.201700306

    Article  CAS  Google Scholar 

  204. Mufti N, Atma T, Fuad A, Sutadji E (2014) Synthesis and characterization of black, red and yellow nanoparticles pigments from the iron sand. AIP Conf Proc 1617:165–169. https://doi.org/10.1063/1.4897129

    Article  CAS  Google Scholar 

  205. Mukherjee S, Madamsetty VS, Bhattacharya D, Roy Chowdhury S, Paul MK, Mukherjee A (2020) Recent advancements of nanomedicine in neurodegenerative disorders theranostics. Adv Funct Mater 30:2003054. https://doi.org/10.1002/adfm.202003054

    Article  CAS  Google Scholar 

  206. Mulens-Arias V, Rojas JM, Barber DF (2020) The intrinsic biological identities of iron oxide nanoparticles and their coatings: unexplored territory for combinatorial therapies. Nanomaterials 10:837. https://doi.org/10.3390/nano10050837

    Article  CAS  PubMed Central  Google Scholar 

  207. Murray AR, Kisin E, Inman A, Young S-H, Muhammed M, Burks T, Uheida A, Tkach A, Waltz M, Castranova V, Fadeel B, Kagan VE, Riviere JE, Monteiro-Riviere N, Shvedova AA (2013) Oxidative stress and dermal toxicity of iron oxide nanoparticles in vitro. Cell Biochem Biophys 67:461–476. https://doi.org/10.1007/s12013-012-9367-9

    Article  CAS  PubMed  Google Scholar 

  208. Murugan K, Choonara YE, Kumar P, Bijukumar D, du Toit LC, Pillay V (2015) Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures. Int J Nanomedicine 10:2191–2206. https://doi.org/10.2147/IJN.S75615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Naqvi S, Samim M, Abdin MZ, Ahmed FJ, Maitra AN, Prashant CK, Dinda AK (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine 5:983–989. https://doi.org/10.2147/IJN.S13244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Natarajan S, Harini K, Gajula GP, Sarmento B, Neves-Petersen MT, Thiagarajan V (2019) Multifunctional magnetic iron oxide nanoparticles: diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. BMC Mater 1:1–22. https://doi.org/10.1186/s42833-019-0002-6

    Article  Google Scholar 

  211. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557. https://doi.org/10.1038/nmat2442

    Article  CAS  PubMed  Google Scholar 

  212. Ni F, Jiang L, Yang R, Chen Z, Qi X, Wang J (2012) Effects of PEG length and iron oxide nanoparticles size on reduced protein adsorption and non-specific uptake by macrophage cells. J Nanosci Nanotechnol 12:2094–2100. https://doi.org/10.1166/jnn.2012.5753

    Article  CAS  PubMed  Google Scholar 

  213. Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267:89–105. https://doi.org/10.1111/j.1365-2796.2009.02187.x

    Article  CAS  PubMed  Google Scholar 

  214. Oliveira H, Pérez-Andrés E, Thevenot J, Sandre O, Berra E, Lecommandoux S (2013) Magnetic field triggered drug release from polymersomes for cancer therapeutics. J Control Release 169:165–170. https://doi.org/10.1016/j.jconrel.2013.01.013

    Article  CAS  PubMed  Google Scholar 

  215. Oliveira F, Rocha S, Fernandes R (2014) Iron metabolism: from health to disease. J Clin Lab Anal 28:210–218. https://doi.org/10.1002/jcla.21668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Palanisamy S, Wang YM (2019) Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer. Dalt Trans 48:9490–9515. https://doi.org/10.1039/c9dt00459a

    Article  CAS  Google Scholar 

  217. Paolini A, Guarch CP, Ramos-López D, de Lapuente J, Lascialfari A, Guari Y, Larionova J, Long J, Nano R (2016) Rhamnose-coated superparamagnetic iron-oxide nanoparticles: an evaluation of their in vitro cytotoxicity, genotoxicity and carcinogenicity. J Appl Toxicol 36:510–520. https://doi.org/10.1002/jat.3273

    Article  CAS  PubMed  Google Scholar 

  218. Paris JL, Baeza A, Vallet-Regí M (2019) Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics. Expert Opin Drug Deliv 16:1095–1112. https://doi.org/10.1080/17425247.2019.1662786

    Article  CAS  PubMed  Google Scholar 

  219. Park EJ, Umh HN, Kim SW, Cho MH, Kim JH, Kim Y (2014) ERK pathway is activated in bare-FeNPs-induced autophagy. Arch Toxicol 88:323–336. https://doi.org/10.1007/s00204-013-1134-1

    Article  CAS  PubMed  Google Scholar 

  220. Patel NC (2020) Methods to optimize CNS exposure of drug candidates. Bioorg Med Chem Lett 2020:127503. https://doi.org/10.1016/j.bmcl.2020.127503

    Article  CAS  Google Scholar 

  221. Patil RM, Shete PB, Thorat ND, Otari SV, Barick KC, Prasad A, Ningthoujam RS, Tiwale BM, Pawar SH (2014) Non-aqueous to aqueous phase transfer of oleic acid coated iron oxide nanoparticles for hyperthermia application. RSC Adv 4:4515–4522. https://doi.org/10.1039/c3ra44644a

    Article  CAS  Google Scholar 

  222. Patil RM, Thorat ND, Shete PB, Otari SV, Tiwale BM, Pawar SH (2016) In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures. Mater Sci Eng C 59:702–709. https://doi.org/10.1016/j.msec.2015.10.064

    Article  CAS  Google Scholar 

  223. Patil RM, Thorat ND, Shete PB, Bedge PA, Gavde S, Joshi MG, Tofail SAM, Bohara RA (2018) Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem Biophys Rep 13:63–72. https://doi.org/10.1016/j.bbrep.2017.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  224. Paunovic J, Vucevic D, Radosavljevic T, Mandić-Rajčević S, Pantic I (2020) Iron-based nanoparticles and their potential toxicity: focus on oxidative stress and apoptosis. Chem Biol Interact 316:108935. https://doi.org/10.1016/j.cbi.2019.108935

    Article  CAS  PubMed  Google Scholar 

  225. Pedram MSZ, Shamloo A, GhafarZadeh E, Alasty A (2014) Modeling and simulation of crossing magnetic nanoparticles through blood brain barrier (BBB). In: 2014 36th annual international conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp 5280–5283. https://doi.org/10.1109/EMBC.2014.6944817

    Chapter  Google Scholar 

  226. Peer WA, Baxter IR, Richards EL, Freeman JL, Murphy AS (2006) Molecular biology of metal homeostasis and detoxification. Springer, Berlin/Heidelberg. https://doi.org/10.1007/b98249

    Book  Google Scholar 

  227. Peetla C, Labhasetwar V (2008) Biophysical characterization of nanoparticle-endothelial model cell membrane interactions. Mol Pharm 5:418–429. https://doi.org/10.1021/mp700140a

    Article  CAS  PubMed  Google Scholar 

  228. Pekny M, Pekna M (2014) Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 94:1077–1098. https://doi.org/10.1152/physrev.00041.2013

    Article  PubMed  Google Scholar 

  229. Peng M, Li H, Luo Z, Kong J, Wan Y, Zheng L, Zhang Q, Niu H, Vermorken A, Van de Ven W, Chen C, Zhang X, Li F, Guo L, Cui Y (2015) Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo. Nanoscale 7:11155–11162. https://doi.org/10.1039/C5NR01382H

    Article  CAS  PubMed  Google Scholar 

  230. Pereira MC, Oliveira LCA, Murad E (2012) Iron oxide catalysts: Fenton and Fentonlike reactions – a review. Clay Miner 47:285–302. https://doi.org/10.1180/claymin.2012.047.3.01

    Article  CAS  Google Scholar 

  231. Periasamy VS, Athinarayanan J, Alhazmi M, Alatiah KA, Alshatwi AA (2016) Fe3O4 nanoparticle redox system modulation via cell-cycle progression and gene expression in human mesenchymal stem cells. Environ Toxicol 31:901–912. https://doi.org/10.1002/tox.22098

    Article  CAS  PubMed  Google Scholar 

  232. Petters C, Dringen R (2014) Comparison of primary and secondary rat astrocyte cultures regarding glucose and glutathione metabolism and the accumulation of iron oxide nanoparticles. Neurochem Res 39:46–58. https://doi.org/10.1007/s11064-013-1189-7

    Article  CAS  PubMed  Google Scholar 

  233. Petters C, Dringen R (2015) Uptake, metabolism and toxicity of iron oxide nanoparticles in cultured microglia, astrocytes and neurons. Springerplus 4:L32. https://doi.org/10.1186/2193-1801-4-S1-L32

    Article  PubMed  PubMed Central  Google Scholar 

  234. Petters C, Bulcke F, Thiel K, Bickmeyer U, Dringen R (2014) Uptake of fluorescent iron oxide nanoparticles by oligodendroglial OLN-93 cells. Neurochem Res 39:372–383. https://doi.org/10.1007/s11064-013-1234-6

    Article  CAS  PubMed  Google Scholar 

  235. Petters C, Thiel K, Dringen R (2016) Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes. Nanotoxicology 10:332–342. https://doi.org/10.3109/17435390.2015.1071445

    Article  CAS  PubMed  Google Scholar 

  236. Pettitt ME, Lead JR (2013) Minimum physicochemical characterisation requirements for nanomaterial regulation. Environ Int 52:41–50. https://doi.org/10.1016/j.envint.2012.11.009

    Article  PubMed  Google Scholar 

  237. Pfaller T, Colognato R, Nelissen I, Favilli F, Casals E, Ooms D, Leppens H, Ponti J, Stritzinger R, Puntes V, Boraschi D, Duschl A, Oostingh GJ (2010) The suitability of different cellular in vitro immunotoxicity and genotoxicity methods for the analysis of nanoparticle-induced events. Nanotoxicology 4:52–72. https://doi.org/10.3109/17435390903374001

    Article  CAS  PubMed  Google Scholar 

  238. Philpott CC, Ryu MS, Frey A, Patel S (2017) Cytosolic iron chaperones: proteins delivering iron cofactors in the cytosol of mammalian cells. J Biol Chem 292:12764–12771. https://doi.org/10.1074/jbc.r117.791962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Pitchaimani A, Nguyen TDT, Koirala M, Zhang Y, Aryal S (2017) Impact of cell adhesion and migration on nanoparticle uptake and cellular toxicity. Toxicol Vitro 43:29–39. https://doi.org/10.1016/j.tiv.2017.05.020

    Article  CAS  Google Scholar 

  240. Podila R, Brown JM (2013) Toxicity of engineered nanomaterials: a physicochemical perspective. J Biochem Mol Toxicol 27:50–55. https://doi.org/10.1002/jbt.21442

    Article  CAS  PubMed  Google Scholar 

  241. Pongrac IM, Dobrivojević M, Ahmed LB, Babič M, Šlouf M, Horák D, Gajović S (2016) Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles. Beilstein J Nanotechnol 7:926–936. https://doi.org/10.3762/bjnano.7.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303. https://doi.org/10.1093/toxsci/kfj099

    Article  CAS  PubMed  Google Scholar 

  243. Powers KW, Palazuelos M, Moudgil BM, Roberts SM (2007) Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1:42–51. https://doi.org/10.1080/17435390701314902

    Article  CAS  Google Scholar 

  244. Qiao C, Yang J, Chen L, Weng J, Zhang X (2017) Intracellular accumulation and immunological responses of lipid modified magnetic iron nanoparticles in mouse antigen processing cells. Biomater Sci 5:1603–1611. https://doi.org/10.1039/c7bm00244k

    Article  CAS  PubMed  Google Scholar 

  245. Rajiv S, Jerobin J, Saranya V, Nainawat M, Sharma A, Makwana P, Gayathri C, Bharath L, Singh M, Kumar M, Mukherjee A, Chandrasekaran N (2015) Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Hum Exp Toxicol 35:170–183. https://doi.org/10.1177/0960327115579208

    Article  CAS  PubMed  Google Scholar 

  246. Ramesh V, Ravichandran P, Copeland CL, Gopikrishnan R, Biradar S, Goornavar V, Ramesh GT, Hall JC (2012) Magnetite induces oxidative stress and apoptosis in lung epithelial cells. Mol Cell Biochem 363:225–234. https://doi.org/10.1007/s11010-011-1174-x

    Article  CAS  PubMed  Google Scholar 

  247. Ramesh R, Kuroda S, Tam J, Sokolov K, Roth JA, Sokolov K, Ramesh R (2014) EGFR-targeted plasmonic magnetic nanoparticles suppress lung tumor growth by abrogating G2/M cell-cycle arrest and inducing DNA damage. Int J Nanomedicine 9:3825–3839. https://doi.org/10.2147/IJN.S65990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Ratner BD (1996) The engineering of biomaterials exhibiting recognition and specificity. J Mol Recognit 9:617–625. https://doi.org/10.1002/(SICI)1099-1352(199634/12)9:5/6<617::AID-JMR310>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  249. Räty JK, Liimatainen T, Wirth T, Airenne KJ, Ihalainen TO, Huhtala T, Hamerlynck E, Vihinen-Ranta M, Närvänen A, Ylä-Herttuala S, Hakumäki JM (2006) Magnetic resonance imaging of viral particle biodistribution in vivo. Gene Ther 13:1440–1446. https://doi.org/10.1038/sj.gt.3302828

    Article  CAS  PubMed  Google Scholar 

  250. Reimer P, Balzer T (2003) Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13:1266–1276. https://doi.org/10.1007/s00330-002-1721-7

    Article  PubMed  Google Scholar 

  251. Remya NS, Syama S, Sabareeswaran A, Mohanan PV (2016) Toxicity, toxicokinetics and biodistribution of dextran stabilized iron oxide nanoparticles for biomedical applications. Int J Pharm 511:586–598. https://doi.org/10.1016/j.ijpharm.2016.06.119

    Article  CAS  PubMed  Google Scholar 

  252. Revia RA, Zhang M (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today 19:157–168. https://doi.org/10.1016/j.mattod.2015.08.022

    Article  CAS  Google Scholar 

  253. Rivet CJ, Yuan Y, Borca-Tasciuc DA, Gilbert RJ (2012) Altering iron oxide nanoparticle surface properties induce cortical neuron cytotoxicity. Chem Res Toxicol 25:153–161. https://doi.org/10.1021/tx200369s

    Article  CAS  PubMed  Google Scholar 

  254. Roca AG, Gutiérrez L, Gavilán H, Fortes Brollo ME, Veintemillas-Verdaguer S, MDP M (2019) Design strategies for shape-controlled magnetic iron oxide nanoparticles. Adv Drug Deliv Rev 138:68–104. https://doi.org/10.1016/j.addr.2018.12.008

    Article  CAS  PubMed  Google Scholar 

  255. Roiter Y, Ornatska M, Rammohan AR, Balakrishnan J, Heine DR, Minko S (2008) Interaction of nanoparticles with lipid membrane. Nano Lett 8:941–944. https://doi.org/10.1021/nl080080l

    Article  CAS  PubMed  Google Scholar 

  256. Rosenberg JT, Sachi-Kocher A, Davidson MW, Grant SC (2012) Intracellular SPIO labeling of microglia: high field considerations and limitations for MR microscopy. Contrast Media Mol Imaging 7:121–129. https://doi.org/10.1002/cmmi.470

    Article  CAS  PubMed  Google Scholar 

  257. Sadeghiani N, Barbosa LS, Silva LP, Azevedo RB, Morais PC, Lacava ZGM (2005) Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid. J Magn Magne Mater 289:466–468. https://doi.org/10.1016/j.jmmm.2004.11.131

    Article  CAS  Google Scholar 

  258. Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik CN, Markovich G (2001) Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids. Langmuir ACS J Surf Colloids 17:7907–7911. https://doi.org/10.1021/la010703

    Article  CAS  Google Scholar 

  259. Sakulkhu U, Mahmoudi M, Maurizi L, Salaklang J, Hofmann H (2014) Protein corona composition of superparamagnetic iron oxide nanoparticles with various physico-chemical properties and coatings. Sci Rep 4:1–9. https://doi.org/10.1038/srep05020

    Article  CAS  Google Scholar 

  260. Sanaeifar N, Rabiee M, Abdolrahim M, Tahriri M, Vashaee D, Tayebi L (2017) A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Anal Biochem 519:19–26. https://doi.org/10.1016/j.ab.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  261. Sanganeria P, Sachar S, Chandra S, Bahadur D, Ray P, Khanna A (2015) Cellular internalization and detailed toxicity analysis of protein-immobilized iron oxide nanoparticles. J Biomed Mater Res B Appl Biomater 103:125–134. https://doi.org/10.1002/jbm.b.33178

    Article  CAS  PubMed  Google Scholar 

  262. Santhosh PB, Ulrih NP (2013) Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Cancer Lett 336:8–17. https://doi.org/10.1016/j.canlet.2013.04.032

    Article  CAS  PubMed  Google Scholar 

  263. Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L (2016) Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release 235:34–47. https://doi.org/10.1016/j.jconrel.2016.05.044

    Article  CAS  PubMed  Google Scholar 

  264. Schulte P, Leso V, Niang M, Iavicoli I (2018) Biological monitoring of workers exposed to engineered nanomaterials. Toxicol Lett 298:112–124. https://doi.org/10.1016/j.toxlet.2018.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Schütz CA, Staedler D, Crosbie-Staunton K, Movia D, Bernasconi CC, Kenzaoui BH, Prina-Mello A, Juillerat-Jeanneret L (2014) Differential stress reaction of human colon cells to oleic-acid-stabilized and unstabilized ultrasmall iron oxide nanoparticles. Int J Nanomedicine 9:3481–3498. https://doi.org/10.2147/IJN.S65082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Seo DY, Jin M, Ryu J-CC, Kim Y-JJ (2017) Investigation of the genetic toxicity by dextran-coated superparamagnetic iron oxide nanoparticles (SPION) in HepG2 cells using the comet assay and cytokinesis-block micronucleus assay. Toxicol Environ Health Sci 9:23–29. https://doi.org/10.1007/s13530-017-0299-z

    Article  Google Scholar 

  267. Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:1–21. https://doi.org/10.1007/s11051-015-2907-7

    Article  CAS  Google Scholar 

  268. Shapiro HM (2003) Parameters and probes. In: Practical flow cytometry. Wiley, New York, pp 273–410. https://doi.org/10.1002/0471722731

    Chapter  Google Scholar 

  269. Sharma G, Kodali V, Gaffrey M, Wang W, Minard KR, Karin NJ, Teeguarden JG, Thrall BD (2014a) Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose-response profiles in vitro. Nanotoxicology 8:663–675. https://doi.org/10.3109/17435390.2013.822115

    Article  CAS  PubMed  Google Scholar 

  270. Sharma HS, Menon PK, Lafuente JV, Aguilar ZP, Wang YA, Muresanu DF, Mössler H, Patnaik R, Sharma A (2014b) The role of functionalized magnetic iron oxide nanoparticles in the central nervous system injury and repair: new potentials for neuroprotection with cerebrolysin therapy. J Nanosci Nanotechnol 14:577–595. https://doi.org/10.1166/jnn.2014.9213

    Article  CAS  PubMed  Google Scholar 

  271. Shen Z, Liu T, Li Y, Lau J, Yang Z, Fan W, Zhou Z, Shi C, Ke C, Bregadze VI, Mandal SK, Liu Y, Li Z, Xue T, Zhu G, Munasinghe J, Niu G, Wu A, Chen X (2018) Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano 12:11355–11365. https://doi.org/10.1021/acsnano.8b06201

    Article  CAS  PubMed  Google Scholar 

  272. Shete PB, Patil RM, Ningthoujam RS, Ghosh SJ, Pawar SH (2013) Magnetic core-shell structures for magnetic fluid hyperthermia therapy application. New J Chem 37:3784–3792. https://doi.org/10.1039/c3nj00862b

    Article  CAS  Google Scholar 

  273. Shete PB, Patil RM, Thorat ND, Prasad A, Ningthoujam RS, Ghosh SJ, Pawar SH (2014) Magnetic chitosan nanocomposite for hyperthermia therapy application: preparation, characterization and in vitro experiments. Appl Surf Sci 288:149–157. https://doi.org/10.1016/j.apsusc.2013.09.169

    Article  CAS  Google Scholar 

  274. Shete PB, Patil RM, Tiwale BM, Pawar SH (2015) Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications. J Magn Magn Mater 377:406–410. https://doi.org/10.1016/j.jmmm.2014.10.137

    Article  CAS  Google Scholar 

  275. Shi M, Cheng L, Zhang Z, Liu Z, Mao X (2015) Ferroferric oxide nanoparticles induce prosurvival autophagy in human blood cells by modulating the Beclin 1/Bcl-2/VPS34 complex. Int J Nanomedicine 10:207–216. https://doi.org/10.2147/IJN.S72598

    Article  CAS  PubMed  Google Scholar 

  276. Shim KH, Hulme J, Maeng EH, Kim M-K, SSA A (2014) Analysis of zinc oxide nanoparticles binding proteins in rat blood and brain homogenate. Int J Nanomedicine 9(Suppl 2):217–224. https://doi.org/10.2147/IJN.S58204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Shin S, Song I, Um S (2015) Role of physicochemical properties in nanoparticle toxicity. Nano 5:1351–1365. https://doi.org/10.3390/nano5031351

    Article  CAS  Google Scholar 

  278. Shrestha B, Tang L, Romero G (2019) Nanoparticles-mediated combination therapies for cancer treatment. Adv Ther 2:1900076. https://doi.org/10.1002/adtp.201900076

    Article  Google Scholar 

  279. Shukla S, Jadaun A, Arora V, Sinha RK, Biyani N, Jain VK (2015) In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles. Toxicol Rep 2:27–39. https://doi.org/10.1016/j.toxrep.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  280. Silva LHA, Silva JR, Ferreira GA, Silva RC, Lima ECD, Azevedo RB, Oliveira DM (2016) Labeling mesenchymal cells with DMSA-coated gold and iron oxide nanoparticles: assessment of biocompatibility and potential applications. J Nanobiotechnol 14:59. https://doi.org/10.1186/s12951-016-0213-x

    Article  CAS  Google Scholar 

  281. Singamaneni S, Bliznyuk VN, Binek C, Tsymbal EY (2011) Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J Mater Chem 21:16819–16845. https://doi.org/10.1039/c1jm11845e

    Article  CAS  Google Scholar 

  282. Singh N, Jenkins GJS, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1:5358. https://doi.org/10.3402/nano.v1i0.5358

    Article  CAS  Google Scholar 

  283. Singh N, Jenkins GJS, Nelson BC, Marquis BJ, Maffeis TGG, Brown AP, Williams PM, Wright CJ, Doak SH (2012) The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials 33:163–170. https://doi.org/10.1016/j.biomaterials.2011.09.087

    Article  CAS  PubMed  Google Scholar 

  284. Singh SP, Rahman MF, Murty USN, Mahboob M, Grover P (2013) Comparative study of genotoxicity and tissue distribution of nano and micron sized iron oxide in rats after acute oral treatment. Toxicol Appl Pharmacol 266:56–66. https://doi.org/10.1016/j.taap.2012.10.016

    Article  CAS  PubMed  Google Scholar 

  285. Singh AV, Laux P, Luch A, Sudrik C, Wiehr S, Wild AM, Santomauro G, Bill J, Sitti M (2019) Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design. Toxicol Mech Methods 29:378–387. https://doi.org/10.1080/15376516.2019.1566425

    Article  CAS  PubMed  Google Scholar 

  286. Smith JE, Wang L, Tan W (2006) Bioconjugated silica-coated nanoparticles for bioseparation and bioanalysis. TrAC Trends Anal Chem 25:848–855. https://doi.org/10.1016/j.trac.2006.03.008

    Article  CAS  Google Scholar 

  287. Soares PIP, Laia CAT, Carvalho A, Pereira LCJ, Coutinho JT, Ferreira IMM, Novo CMM, Borges JP (2016) Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications. Appl Surf Sci 383:240–247. https://doi.org/10.1016/j.apsusc.2016.04.181

    Article  CAS  Google Scholar 

  288. Soenen SJ, De Cuyper M, De Smedt SC, Braeckmans K (2012) Investigating the toxic effects of iron oxide nanoparticles. Methods Enzymol 509:195–224. https://doi.org/10.1016/B978-0-12-391858-1.00011-3

    Article  CAS  PubMed  Google Scholar 

  289. Soetaert F, Korangath P, Serantes D, Fiering S, Ivkov R (2020) Cancer therapy with iron oxide nanoparticles: agents of thermal and immune therapies. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2020.06.025

  290. Song C, Sun W, Xiao Y, Shi X (2019) Ultrasmall iron oxide nanoparticles: synthesis, surface modification, assembly, and biomedical applications. Drug Discov Today 24:835–844. https://doi.org/10.1016/j.drudis.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  291. Spandana AKM, Bhaskaran M, Karri VVSNR, Natarajan J (2020) A comprehensive review of nano drug delivery system in the treatment of CNS disorders. J Drug Deliv Sci Technol 57:101628. https://doi.org/10.1016/j.jddst.2020.101628

    Article  CAS  Google Scholar 

  292. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265. https://doi.org/10.1016/j.addr.2008.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Sun Z, Yathindranath V, Worden M, Thliveris JA, Chu S, Parkinson FE, Hegmann T, Miller D (2013) Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models. Int J Nanomedicine 8:961–970. https://doi.org/10.2147/IJN.S39048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Sutariya VB, Pathak V, Groshev A, Mahavir B, Naik S, Patel D, Pathak Y (2016) Introduction—biointeractions of nanomaterials. In: Biointeractions of nanomaterials. CRC Press, Boca Raton, pp 1–48. https://doi.org/10.1201/b17191

    Chapter  Google Scholar 

  295. Suzuki H, Toyooka T, Ibuki Y (2007) Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environ Sci Technol 41:3018–3024. https://doi.org/10.1021/es0625632

    Article  CAS  PubMed  Google Scholar 

  296. Szalay B, Tátrai E, Nyírő G, Vezér T, Dura G (2012) Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments. J Appl Toxicol 32:446–453. https://doi.org/10.1002/jat.1779

    Article  CAS  PubMed  Google Scholar 

  297. Tan BL, Norhaizan ME, Chan LC (2018) An intrinsic mitochondrial pathway is required for phytic acid-chitosan-iron oxide nanocomposite (Phy-CS-MNP) to induce G0/G1 cell cycle arrest and apoptosis in the human colorectal cancer (HT-29) cell line. Pharmaceutics 10:1–17. https://doi.org/10.3390/pharmaceutics10040198

    Article  CAS  Google Scholar 

  298. Teleanu DM, Chircov C, Grumezescu AM, Teleanu RI (2019) Neurotoxicity of nanomaterials: an up-to-date overview. Nanomaterials 9:96. https://doi.org/10.3390/nano9010096

    Article  CAS  PubMed Central  Google Scholar 

  299. Teske S, Detweiler C (2015) The biomechanisms of metal and metal-oxide nanoparticles’ interactions with cells. Int J Environ Res Public Health 12:1112–1134. https://doi.org/10.3390/ijerph120201112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Thakor AS, Jokerst JV, Ghanouni P, Campbell JL, Mittra E, Gambhir SS (2016) Clinically approved nanoparticle imaging agents. J Nucl Med 57:1833–1837. https://doi.org/10.2967/jnumed.116.181362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Thomsen LB, Linemann T, Pondman KM, Lichota J, Kim KS, Pieters RJ, Visser GM, Moos T, Visser GM, Moos T (2013) Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells. ACS Chem Neurosci 4:1352–1360. https://doi.org/10.1021/cn400093z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Thomsen LB, Thomsen MS, Moos T (2015) Targeted drug delivery to the brain using magnetic nanoparticles. Ther Deliv 6:1145–1155. https://doi.org/10.4155/tde.15.56

    Article  CAS  PubMed  Google Scholar 

  303. Thorat ND, Bohara RA, Noor MR, Dhamecha D, Soulimane T, Tofail SAM (2017) Effective cancer theranostics with polymer encapsulated superparamagnetic nanoparticles: combined effects of magnetic hyperthermia and controlled drug release. ACS Biomater Sci Eng 3:1332–1340. https://doi.org/10.1021/acsbiomaterials.6b00420

    Article  CAS  PubMed  Google Scholar 

  304. Tong L, Zhao M, Zhu S, Chen J (2011) Synthesis and application of superparamagnetic iron oxide nanoparticles in targeted therapy and imaging of cancer. Front Med 5:379–387. https://doi.org/10.1007/s11684-011-0162-6

    Article  PubMed  Google Scholar 

  305. Tong S, Zhu H, Bao G (2019) Magnetic iron oxide nanoparticles for disease detection and therapy. Mater Today 31:86–99. https://doi.org/10.1016/j.mattod.2019.06.003

    Article  CAS  Google Scholar 

  306. Tran TT-DD, Van Vo T, Tran PH-LL (2015) Design of iron oxide nanoparticles decorated oleic acid and bovine serum albumin for drug delivery. Chem Eng Res Des 94:112–118. https://doi.org/10.1016/j.cherd.2014.12.016

    Article  CAS  Google Scholar 

  307. Unterweger H, Subatzus D, Tietze R, Janko C, Poettler M, Stiegelschmitt A, Schuster M, Maake C, Boccaccini A, Alexiou C (2015) Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy. Int J Nanomedicine 6985. https://doi.org/10.2147/IJN.S92336

  308. Uribe Madrid SI, Pal U, Kang YS, Kim J, Kwon H, Kim J (2015) Fabrication of Fe3O4@mSiO2 core-shell composite nanoparticles for drug delivery applications. Nanoscale Res Lett 10:217. https://doi.org/10.1186/s11671-015-0920-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Vakili-Ghartavol R, Momtazi-Borojeni AA, Vakili-Ghartavol Z, Aiyelabegan HT, Jaafari MR, Rezayat SM, Arbabi Bidgoli S (2020) Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues. Artif Cells Nanomed Biotechnol 48:443–451. https://doi.org/10.1080/21691401.2019.1709855

    Article  CAS  PubMed  Google Scholar 

  310. Valdiglesias V, Kilic G, Costa C, Fernandez-Bertolez N, Pasaro E, Teixeira JP, Laffon B (2015) Effects of iron oxide nanoparticles: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Environ Mol Mutagen 56:125–148. https://doi.org/10.1002/em.21909

    Article  CAS  PubMed  Google Scholar 

  311. Valdiglesias V, Fernández-Bertólez N, Kiliç G, Costa C, Costa S, Fraga S, Bessa MJ, Pásaro E, Teixeira JP, Laffon B (2016) Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J Trace Elem Med Biol 38:53–63. https://doi.org/10.1016/j.jtemb.2016.03.017

    Article  CAS  PubMed  Google Scholar 

  312. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. https://doi.org/10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  313. Vangijzegem T, Stanicki D, Laurent S (2019) Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv 16:69–78. https://doi.org/10.1080/17425247.2019.1554647

    Article  CAS  PubMed  Google Scholar 

  314. Vasir JK, Labhasetwar V (2008) Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials 29:4244–4252. https://doi.org/10.1016/j.biomaterials.2008.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304. https://doi.org/10.1016/j.addr.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  316. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21. https://doi.org/10.1002/smll.200901158

    Article  CAS  PubMed  Google Scholar 

  317. Voss L, Hsiao IL, Ebisch M, Vidmar J, Dreiack N, Böhmert L, Stock V, Braeuning A, Loeschner K, Laux P, Thünemann AF, Lampen A, Sieg H (2020) The presence of iron oxide nanoparticles in the food pigment E172. Food Chem 327:127000. https://doi.org/10.1016/j.foodchem.2020.127000

    Article  CAS  PubMed  Google Scholar 

  318. Wahajuddin, Arora S (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445–3471. https://doi.org/10.2147/IJN.S30320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Wan R, Mo Y, Feng L, Chien S, Tollerud DJ, Zhang Q (2012) DNA damage caused by metal nanoparticles: involvement of oxidative stress and activation of ATM. Chem Res Toxicol 25:1402–1411. https://doi.org/10.1021/tx200513t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochem J 434:365–381. https://doi.org/10.1042/bj20101825

    Article  CAS  PubMed  Google Scholar 

  321. Wang YXJ, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331. https://doi.org/10.1007/s003300100908

    Article  CAS  PubMed  Google Scholar 

  322. Wang B, Feng WY, Wang M, Shi JW, Zhang F, Ouyang H, Zhao YL, Chai ZF, Huang YY, Xie YN, Wang HF, Wang J (2007) Transport of intranasally instilled fine Fe2O3 particles into the brain: micro-distribution, chemical states, and histopathological observation. Biol Trace Elem Res 118:233–243. https://doi.org/10.1007/s12011-007-0028-6

    Article  CAS  PubMed  Google Scholar 

  323. Wang J, Sun W, Ali SF (2009) Nanoparticles: is neurotoxicity a concern? In: Sahu SC, Casciano DA (eds) Nanotoxicity: from in vivo and in vitro models to health risks. Wiley, Chichester, pp 171–182. https://doi.org/10.1002/9780470747803.ch9

    Chapter  Google Scholar 

  324. Wang J, Chen Y, Chen B, Ding J, Xia G, Gao C, Cheng J, Jin N, Zhou Y, Li X, Tang M, Wang XM (2010) Pharmacokinetic parameters and tissue distribution of magnetic Fe(3)O(4) nanoparticles in mice. Int J Nanomedicine 5:861–866. https://doi.org/10.2147/IJN.S13662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Wang J, Chen B, Jin N, Xia G, Chen Y, Zhou Y, Cai X, Ding J, Li X, Wang X (2011) The changes of T lymphocytes and cytokines in ICR mice fed with Fe3O4 magnetic nanoparticles. Int J Nanomedicine 6:605–610. https://doi.org/10.2147/IJN.S16176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Wang Y, Ding L, Yao C, Li C, Xing X, Huang Y, Gu T, Wu M (2017) Toxic effects of metal oxide nanoparticles and their underlying mechanisms. Sci China Mater 60:93–108. https://doi.org/10.1007/s40843-016-5157-0

    Article  CAS  Google Scholar 

  327. Watanabe M, Yoneda M, Morohashi A, Hori Y, Okamoto D, Sato A, Kurioka D, Nittami T, Hirokawa Y, Shiraishi T, Kawai K, Kasai H, Totsuka Y (2013) Effects of Fe3O4 magnetic nanoparticles on A549 cells. Int J Mol Sci 14:15546–15560. https://doi.org/10.3390/ijms140815546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Wei Y, Zhao M, Yang F, Mao Y, Xie H, Zhou Q (2016) Iron overload by superparamagnetic iron oxide nanoparticles is a high risk factor in cirrhosis by a systems toxicology assessment. Sci Rep 6:29110. https://doi.org/10.1038/srep29110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Wei H, Bruns OT, Kaul MG, Hansen EC, Barch M, Wiśniowska A, Chen O, Chen Y, Li N, Okada S, Cordero JM, Heine M, Farrar CT, Montana DM, Adam G, Ittrich H, Jasanoff A, Nielsen P, Bawendi MG (2017) Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci 114:2325–2330. https://doi.org/10.1073/pnas.1620145114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Wei X, Yang F, Chen D, Li J, Shi X, Li B, Zhang C (2020) Analyzing nanoparticle-induced neurotoxicity: a bibliometric analysis. Toxicol Ind Health 36:22–29. https://doi.org/10.1177/0748233719900844

    Article  PubMed  Google Scholar 

  331. Weissleder R, Stark D, Engelstad B, Bacon B, Compton C, White D, Jacobs P, Lewis J (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 152:167–173. https://doi.org/10.2214/ajr.152.1.167

    Article  CAS  Google Scholar 

  332. Wijnhoven SWP, Dekkers S, Hagens WI, De Jong WH (2009) Exposure to nanomaterials in consumer products. RIVM Lett Rep. 340370001/2009. https://www.rivm.nl/bibliotheek/rapporten/340370003

  333. Willmann W, Dringen R (2019) How to study the uptake and toxicity of nanoparticles in cultured brain cells: the dos and don’t forgets. Neurochem Res 44:1330–1345. https://doi.org/10.1007/s11064-018-2598-4

    Article  CAS  PubMed  Google Scholar 

  334. Wu J, Sun J (2011) Investigation on mechanism of growth arrest induced by iron oxide nanoparticles in PC12 cells. J Nanosci Nanotechnol 11:11079–11083. https://doi.org/10.1166/jnn.2011.394

    Article  CAS  PubMed  Google Scholar 

  335. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415. https://doi.org/10.1007/s11671-008-9174-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Wu W, Chen B, Cheng J, Wang J, Xu W, Liu L, Xia G, Wei H, Wang X, Yang M, Yang L, Zhang Y, Xu C, Li J (2010) Biocompatibility of Fe3O4/DNR magnetic nanoparticles in the treatment of hematologic malignancies. Int J Nanomedicine 5:1079–1084. https://doi.org/10.2147/IJN.S15660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Wu J, Wang C, Sun J, Xue Y (2011) Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano 5:4476–4489. https://doi.org/10.1021/nn103530b

    Article  CAS  PubMed  Google Scholar 

  338. Wu J, Ding T, Sun J (2013) Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus. Neurotoxicology 34:243–253. https://doi.org/10.1016/j.neuro.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  339. Wu Y, Lu Z, Li Y, Yang J, Zhang X (2020) Surface modification of iron oxide-based magnetic nanoparticles for cerebral theranostics: application and prospection. Nanomaterials 10:1–21. https://doi.org/10.3390/nano10081441

    Article  CAS  Google Scholar 

  340. Xia JG, Zhang S, Zhang Y, Ma M, Gu N (2009a) Maghemite nanoparticles and their protamine derivatives: cellular internalization and effects on cell-cycle progress. J Nanosci Nanotechnol 9:1025–1028. https://doi.org/10.1166/jnn.2009.C078

    Article  CAS  PubMed  Google Scholar 

  341. Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI, Nel AE (2009b) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3:3273–3286. https://doi.org/10.1021/nn900918w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Xiao M, Xiao ZJ, Yang B, Lan Z, Fang F (2020) Blood-brain barrier: more contributor to disruption of central nervous system homeostasis than victim in neurological disorders. Front Neurosci 14:1–17. https://doi.org/10.3389/fnins.2020.00764

    Article  Google Scholar 

  343. Xiaoli F, Longquan S (2018) Neurotoxicity of nanomaterials. In: Emerging nanotechnologies in dentistry, 2nd edn. Elsevier, Amsterdam, pp 421–444

    Chapter  Google Scholar 

  344. Xie W, Guo Z, Gao F, Gao Q, Wang D, Liaw BS, Cai Q, Sun X, Wang X, Zhao L (2018) Shape-, size-and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 8:3284–3307. https://doi.org/10.7150/thno.25220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Xie L, Jin W, Chen H, Zhang Q (2019) Superparamagnetic iron oxide nanoparticles for cancer diagnosis and therapy. J Biomed Nanotechnol 15:215–416. https://doi.org/10.1166/jbn.2019.2678

    Article  CAS  PubMed  Google Scholar 

  346. Xu P, Li J, Chen B, Wang X, Cai X, Jiang H, Wang C, Zhang H (2012a) The real-time neurotoxicity analysis of Fe3O4 nanoparticles combined with daunorubicin for rat brain in vivo. J Biomed Nanotechnol 8:417–423. https://doi.org/10.1166/jbn.2012.1402

    Article  CAS  PubMed  Google Scholar 

  347. Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012b) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10. https://doi.org/10.1016/j.scitotenv.2012.02.023

    Article  CAS  PubMed  Google Scholar 

  348. Yameen B, Choi WIL, Vilos C, Swami A, Shi J, Farokhzad OC (2014) Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 190:485–499. https://doi.org/10.1016/j.jconrel.2014.06.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Yang Z, Liu ZW, Allaker RP, Reip P, Oxford J, Ahmad Z, Ren G (2010) A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 7:S411–S422. https://doi.org/10.1098/rsif.2010.0158.focus

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Yang CY, Hsiao JK, Tai MF, Chen ST, Cheng HY, Wang JL, Liu HM (2011) Direct labeling of hMSC with SPIO: the long-term influence on toxicity, chondrogenic differentiation capacity, and intracellular distribution. Mol Imaging Biol 13:443–451. https://doi.org/10.1007/s11307-010-0360-7

    Article  PubMed  Google Scholar 

  351. Yang X, Ma P, Luo Q, Chen J, Gan Y, Du J, Ding S, Xi Z (2012) Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomedicine 7:4809. https://doi.org/10.2147/IJN.S34349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Yang G, Ma W, Zhang B, Xie Q (2016) The labeling of stem cells by superparamagnetic iron oxide nanoparticles modified with PEG/PVP or PEG/PEI. Mater Sci Eng C 62:384–390. https://doi.org/10.1016/j.msec.2016.01.090

    Article  CAS  Google Scholar 

  353. Yarjanli Z, Ghaedi K, Esmaeili A, Rahgozar S, Zarrabi A (2017) Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neurosci 18:51. https://doi.org/10.1186/s12868-017-0369-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Yemisci M, Caban S, Gursoy-Ozdemir Y, Lule S, Novoa-Carballal R, Riguera R, Fernandez-Megia E, Andrieux K, Couvreur P, Capan Y, Dalkara T (2015) Systemically administered brain-targeted nanoparticles transport peptides across the blood-brain barrier and provide neuroprotection. J Cereb Blood Flow Metab 35:469–475. https://doi.org/10.1038/jcbfm.2014.220

    Article  CAS  PubMed  Google Scholar 

  355. Yoshioka Y, Higashisaka K, Tsunoda S, Tsutsumi Y (2014) Engineered cell manipulation for biomedical application. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55139-3

    Book  Google Scholar 

  356. Yu M, Huang S, Yu KJ, Clyne AM (2012) Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int J Mol Sci 13:5554–5570. https://doi.org/10.3390/ijms13055554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Yun J-W, Kim S-H, You J-R, Kim WH, Jang J-J, Min S-K, Kim HC, Chung DH, Jeong J, Kang B-C, Che J-H (2015) Comparative toxicity of silicon dioxide, silver and iron oxide nanoparticles after repeated oral administration to rats. J Appl Toxicol 35:681–693. https://doi.org/10.1002/jat.3125

    Article  CAS  PubMed  Google Scholar 

  358. Yun WS, Aryal S, Ahn YJ, Seo YJ, Key J (2020) Engineered iron oxide nanoparticles to improve regenerative effects of mesenchymal stem cells. Biomed Eng Lett 10:259–273. https://doi.org/10.1007/s13534-020-00153-w

    Article  PubMed  PubMed Central  Google Scholar 

  359. Zeng H, Sanes JR (2017) Neuronal cell-type classification: challenges, opportunities and the path forward. Nat Rev Neurosci 18:530–546. https://doi.org/10.1038/nrn.2017.85

    Article  CAS  PubMed  Google Scholar 

  360. Zhang L, He R, Gu HC (2006) Oleic acid coating on the monodisperse magnetite nanoparticles. Appl Surf Sci 253:2611–2617. https://doi.org/10.1016/j.apsusc.2006.05.023

    Article  CAS  Google Scholar 

  361. Zhang Y, Yang M, Portney NG, Cui D, Budak G, Ozbay E, Ozkan M, Ozkan CS (2008) Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdevices 10:321–328. https://doi.org/10.1007/s10544-007-9139-2

    Article  CAS  PubMed  Google Scholar 

  362. Zhang T, Qian L, Tang M, Xue Y, Kong L, Zhang S, Pu Y (2012a) Evaluation on cytotoxicity and genotoxicity of the L-glutamic acid coated iron oxide nanoparticles. J Nanosci Nanotechnol 12:2866–2873. https://doi.org/10.1166/jnn.2012.5763

    Article  CAS  PubMed  Google Scholar 

  363. Zhang XF, Mansouri S, Mbeh DA, Yahia L, Sacher E, Veres T (2012b) Nitric oxide delivery by core/shell superparamagnetic nanoparticle vehicles with enhanced biocompatibility. Langmuir 28:12879–12885. https://doi.org/10.1021/la302357h

    Article  CAS  PubMed  Google Scholar 

  364. Zhang Y, Newton B, Lewis E, Fu PP, Kafoury R, Ray PC, Yu H (2015) Cytotoxicity of organic surface coating agents used for nanoparticles synthesis and stability. Toxicol Vitro 29:762–768. https://doi.org/10.1016/j.tiv.2015.01.017

    Article  CAS  Google Scholar 

  365. Zhang J, Chen N, Wang H, Gu W, Liu K, Ai P, Yan C, Ye L (2016a) Dual-targeting superparamagnetic iron oxide nanoprobes with high and low target density for brain glioma imaging. J Colloid Interface Sci 469:86–92. https://doi.org/10.1016/j.jcis.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  366. Zhang Q, Rajan SS, Tyner KM, Casey BJ, Dugard CK, Jones Y, Paredes AM, Clingman CS, Howard PC, Goering PL (2016b) Effects of iron oxide nanoparticles on biological responses and MR imaging properties in human mammary healthy and breast cancer epithelial cells. J Biomed Mater Res B Appl Biomater 104:1032–1042. https://doi.org/10.1002/jbm.b.33450

    Article  CAS  PubMed  Google Scholar 

  367. Zhang X, Zhang H, Liang X, Zhang J, Tao W, Zhu X, Chang D, Zeng X, Liu G, Mei L (2016c) Iron oxide nanoparticles induce autophagosome accumulation through multiple mechanisms: lysosome impairment, mitochondrial damage, and ER stress. Mol Pharm 13:2578–2587. https://doi.org/10.1021/acs.molpharmaceut.6b00405

    Article  CAS  PubMed  Google Scholar 

  368. Zhang Y, Wang Z, Li X, Wang LL, Yin M, Wang LL, Chen N, Fan C, Song H (2016d) Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration in drosophila. Adv Mater 28:1387–1393. https://doi.org/10.1002/adma.201503893

    Article  CAS  PubMed  Google Scholar 

  369. Zhao S, Yu X, Qian Y, Chen W, Shen J (2020) Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics 10:6278–6309. https://doi.org/10.7150/thno.42564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Zhu X-M, Wang Y-XJ, Cham-Fai Leung K, Lee S-F, Zhao F, Wang D-W, Lai JM, Wan C, Cheng CH, Ahuja AT (2012) Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines. Int J Nanomedicine 7:953–964. https://doi.org/10.2147/IJN.S28316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Zhu N, Ji H, Yu P, Niu J, Farooq M, Akram M, Udego I, Li H, Niu X (2018) Surface modification of magnetic iron oxide nanoparticles. Nanomaterials 8:810. https://doi.org/10.3390/nano8100810

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The present work was supported by Xunta de Galicia (reference ED431B 2019/02), Ministerio de Ciencia e Innovación (PID2020-114908GA-I00), TOXI-NANO (SEM2021-A1), NeuroiNPact (SEM2021-B2), NanoBioBarriers (PTDC/MED-TOX/31162/2017) funded by Operational Program for Competitiveness and Internationalisation through European Regional Development Funds (FEDER/FNR) and through national funds by the Portuguese Foundation for Science and Technology (FCT), and NanoLegaTox (PTDC/SAU-PUB/29651/2017) project co-financed by COMPETE 2020, Portugal 2020 and European Union, through FEDER.  Vanessa Valdiglesias was supported by Ministerio de Educación, Cultura y Deporte (reference BEAGAL18/00142), and Fátima Brandão by the Portuguese Foundation for Science and Technology (SFRH/BD101060/2014). Authors would also like to acknowledge COST Action CA17140 “Cancer nanomedicine – from the bench to the bedside (NANO2CLINIC)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Valdiglesias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernández-Bertólez, N. et al. (2022). Toxicological Aspects of Iron Oxide Nanoparticles. In: Louro, H., Silva, M.J. (eds) Nanotoxicology in Safety Assessment of Nanomaterials. Advances in Experimental Medicine and Biology, vol 1357. Springer, Cham. https://doi.org/10.1007/978-3-030-88071-2_13

Download citation

Publish with us

Policies and ethics