Skip to main content

Finite Difference Schemes with Non-uniform Time Meshes for Distributed-Order Diffusion Equations

  • Conference paper
  • First Online:
Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21) (ICFDA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 452))

  • 303 Accesses

Abstract

In this work, a stable and convergent numerical scheme on non-uniform time meshes is proposed, for the solution of distributed-order diffusion equations. A set of numerical results illustrates that the use of particular non-uniform time meshes provides more accurate results than the use of a uniform mesh, in the case of non-smooth solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Caputo, M.: Elasticità e Dissipazione. Zanichelli, Bologna, Italy (1969)

    Google Scholar 

  2. Caputo, M.: Mean fractional-order-derivatives differential equations and filters, Annali dellUniversità di Ferrara. Nuova Serie. Sezione VII. Sci. Matematiche 41, 73–84 (1995)

    Google Scholar 

  3. Caputo, M.: Distributed order differential equations modelling dielectric induction and diffusion. Fract. Calc. Appl. Anal. 4, 421–442 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Bagley, R.L., Torvik, P.J.: On the existence of the order domain and the solution of distributed order equations. Int. J. Appl. Math. I, 865–882 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Bagley, R.L., Torvik, P.J.: On the existence of the order domain and the solution of distributed order equations. Int. J. Appl. Math. II, 965–987 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Gorenflo, R., Luchko, Y., Stojanovic, M.: Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 16, 297–316 (2013)

    Article  MathSciNet  Google Scholar 

  7. Mainardi, F., Pagnini, G., Mura, A., Gorenflo, R.: Time-fractional diffusion of distributed order. J. Vib. Control 14, 1267–1290 (2008)

    Article  MathSciNet  Google Scholar 

  8. Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66, 046129 (2002)

    Article  Google Scholar 

  9. Diethelm, K., Ford, N.J.: Numerical solution methods for distributed order differential equations. Fract. Calc. Appl. Anal. 4, 531–542 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Ford, N.J., Morgado, M.L.: Distributed order equations as boundary value problems. Comput. Math. Appl. 64, 2973–2981 (2012)

    Article  MathSciNet  Google Scholar 

  11. Ford, N.J., Morgado, M.L., Rebelo, M.: An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time. Electron. Trans. Numer. Anal. 44, 289–305 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction-diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)

    Article  MathSciNet  Google Scholar 

  13. Ye, H., Liu, F., Anh, V.: Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J. Comput. Phys. 298, 652–660 (2015)

    Article  MathSciNet  Google Scholar 

  14. Wang, X., Liu, F., Chen, X.: Novel second-order accurate implicit numerical methods for the Riesz space distributed-order advection-dispersion equations. Adv. Math. Phys. (2015)

    Google Scholar 

  15. Jin, B., Lazarov, R., Sheen, D., Zhou, Z.: Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data. Frac. Calc. Appl. Anal. 19, 69–93 (2016)

    Article  MathSciNet  Google Scholar 

  16. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MathSciNet  Google Scholar 

  17. Changpin, L., Qian, Y., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)

    Article  MathSciNet  Google Scholar 

  18. Morgado, M.L., Morgado, L.F.: Modeling transient currents in time-of-flight experiments with tempered time-fractional diffusion equations. Progr. Fract. Differ. Appl. 6(1), 43–53 (2020). https://doi.org/10.18576/pfda/060105

    Article  Google Scholar 

Download references

Aknowledgments

The first author acknowledges Fundação para a Ciência e Tecnologia within projects UIDB/04621/2020 and UIDP/04621/2020.

This work was also funded by national funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the scope of the project UIDB/00297/2020 (Center for Mathematics and Applications), and, through projects UIDB/00013/2020 and UIDP/00013/2020 (CMAT - Centre of Mathematics - University of Minho).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rebelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morgado, M.L., Rebelo, M., Ferrás, L.L. (2022). Finite Difference Schemes with Non-uniform Time Meshes for Distributed-Order Diffusion Equations. In: Dzielinski, A., Sierociuk, D., Ostalczyk, P. (eds) Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21). ICFDA 2021. Lecture Notes in Networks and Systems, vol 452. Springer, Cham. https://doi.org/10.1007/978-3-031-04383-3_27

Download citation

Publish with us

Policies and ethics