Skip to main content

Detection of Epilepsy in EEGs Using Deep Sequence Models – A Comparative Study

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2022)

Abstract

The automation of interictal epileptiform discharges through deep learning models can increase assertiveness and reduce the time spent on epilepsy diagnosis, making the process faster and more reliable. It was demonstrated that deep sequence networks can be a useful type of algorithm to effectively detect IEDs. Several different deep networks were tested, of which the best three architectures reached average AUC values of 0.96, 0.95 and 0.94, with convergence of test specificity and sensitivity values around 90%, which indicates a good ability to detect IED samples in EEG records.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelhameed, A.M., Daoud, H.G., Bayoumi, M.: Deep convolutional bidirectional LSTM recurrent neural network for epileptic seizure detection. In: 2018 16th IEEE International New Circuits and Systems Conference, NEWCAS 2018, pp. 139–143 (2018). https://doi.org/10.1109/NEWCAS.2018.8585542

  2. Beach, R., Reading, R.: The importance of acknowledging clinical uncertainty in the diagnosis of epilepsy and non-epileptic events. Arch. Dis. Childhood 90(12), 1219–1222 (2005). https://doi.org/10.1136/adc.2004.065441

    Article  Google Scholar 

  3. Benbadis, S.: The differential diagnosis of epilepsy: a critical review. Epilepsy Behav. 15(1), 15–21 (2009). https://doi.org/10.1016/j.yebeh.2009.02.024, http://dx.DOI.org/10.1016/j.yebeh.2009.02.024

  4. Bongiorni, L., Balbinot, A.: Evaluation of recurrent neural networks as epileptic seizure predictor. Array 8, 100038 (2020). https://doi.org/10.1016/j.array.2020.100038

  5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16(February 2017), 321–357 (2002). https://doi.org/10.1613/jair.953

  6. Chelgani, S.C., Shahbazi, B., Hadavandi, E.: Learning representations by back-propagating errors. Meas. J. Int. Meas. Confederation 114(2), 102–108 (2018). https://doi.org/10.1016/j.measurement.2017.09.025

  7. da Silva Lourenço, C., Tjepkema-Cloostermans, M.C., van Putten, M.J.: Efficient use of clinical EEG data for deep learning in epilepsy. Clin. Neurophysiol. 132(6), 1234–1240 (2021). https://doi.org/10.1016/j.clinph.2021.01.035

    Article  Google Scholar 

  8. Daoud, H., Bayoumi, M.A.: Efficient Epileptic Seizure Prediction Based on Deep Learning. IEEE Trans. Biomed. Circ. Syst. 13(5), 804–813 (2019). https://doi.org/10.1109/TBCAS.2019.2929053

    Article  Google Scholar 

  9. Dosovitskiy, A., et al.: An Image is Worth 16 \(\times \)16 Words: Transformers for Image Recognition at Scale. CoRR, pp. 1–21 (2020). http://arxiv.org/abs/2010.11929

  10. Fisher, R.S., et al.: Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(10), 1701–1702 (2005). https://doi.org/10.1111/j.1528-1167.2005.00273_4.x

  11. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning, vol. 29. MIT Press (2016). http://www.deeplearningbook.org

  12. Guler, N.F., Ubeyli, E.D., Guler, I.: Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 29(3), 506–514 (2005). https://doi.org/10.1016/j.eswa.2005.04.011

    Article  Google Scholar 

  13. Jiang, K., Liang, S., Meng, L., Zhang, Y., Wang, P., Wang, W.: A two-level attention-based sequence-to-sequence model for accurate inter-patient arrhythmia detection. In: Proceedings - 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020, pp. 1029–1033 (2020). https://doi.org/10.1109/BIBM49941.2020.9313453

  14. Johnson, E.L.: Seizures and Epilepsy. Med. Clin. North Am. 103(2), 309–324 (2019). https://doi.org/10.1016/j.mcna.2018.10.002

    Article  Google Scholar 

  15. Lodder, S., Putten, V., Antonius, M.J.: Automated EEG analysis: characterizing the posterior dominant rhythm. J. Neurosci. Meth. 200(1), 86–93 (2011). https://doi.org/10.1016/j.jneumeth.2011.06.008

    Article  Google Scholar 

  16. Lourenço, C., Tjepkema-Cloostermans, M.C., Teixeira, L.F., van Putten, M.J.: Deep learning for interictal epileptiform discharge detection from Scalp EEG recordings. IFMBE Proc. 76, 1984–1997 (2020). https://doi.org/10.1007/978-3-030-31635-8_237

  17. Rosenow, F., Klein, K.M., Hamer, H.M.: Non-invasive EEG evaluation in epilepsy diagnosis. Expert Rev. Neurother. 15(4), 425–444 (2015). https://doi.org/10.1586/14737175.2015.1025382

    Article  Google Scholar 

  18. Song, H., Rajan, D., Thiagarajan, J.J., Spanias, A.: Attend and diagnose: clinical time series analysis using attention models. In: 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 4091–4098 (2018)

    Google Scholar 

  19. Tjepkema-Cloostermans, M.C., de Carvalho, R.C., van Putten, M.J.: Deep learning for detection of focal epileptiform discharges from scalp EEG recordings. Clin. Neurophysiol. 129(10), 2191–2196 (2018). https://doi.org/10.1016/j.clinph.2018.06.024

    Article  Google Scholar 

  20. Tsiouris, K.M., Pezoulas, V.C., Zervakis, M., Konitsiotis, S., Koutsouris, D.D., Fotiadis, D.I.: A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals. Comput. Bio. Med. 99, 24–37 (2018). https://doi.org/10.1016/j.compbiomed.2018.05.019

  21. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 2017-December(Nips), 5999–6009 (2017)

    Google Scholar 

  22. Yan, G., Liang, S., Zhang, Y., Liu, F.: Fusing transformer model with temporal features for ECG heartbeat classification. In: Proceedings - 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019, pp. 898–905 (2019). https://doi.org/10.1109/BIBM47256.2019.8983326

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marques, M., Lourenço, C.d.S., Teixeira, L.F. (2022). Detection of Epilepsy in EEGs Using Deep Sequence Models – A Comparative Study. In: Pinho, A.J., Georgieva, P., Teixeira, L.F., Sánchez, J.A. (eds) Pattern Recognition and Image Analysis. IbPRIA 2022. Lecture Notes in Computer Science, vol 13256. Springer, Cham. https://doi.org/10.1007/978-3-031-04881-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04881-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04880-7

  • Online ISBN: 978-3-031-04881-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics