Abstract
Often, real-life problems require modelling several response variables together. This work analyses a multivariate linear regression model when the data are censored. Censoring distorts the correlation structure of the underlying variables and increases the bias of the usual estimators. Thus, we propose three methods to deal with multivariate data under left censoring, namely Expectation Maximization (EM), Data Augmentation (DA) and Gibbs Sampler with Data Augmentation (GDA). Results from a simulation study show that both DA and GDA estimates are consistent for low and moderate correlation. Under high correlation scenarios, EM estimates present a lower bias.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The generalization of this study to more than one independent variable is trivial for DA and GDA. However, the computation of the EM estimates may be hindered by the need to obtain the moments of the truncated multivariate distributions.
References
Anderson: Multivariate Statistical Analy. Wiley, New York (2003)
Lee, G., Scott, C.: EM algorithms for multivariate gaussian mixture models with truncated and censored data. Comput. Stat. & Data Anal. 56(9), 2816–2829 (2012)
Hopke, P.K., Liu, C., Rubin, D.B.: Multiple imputation for multivariate data with missing and below-threshold measurements: time-series concentrations of pollutants in the arctic. Biometrics 57(1), 22–33 (2001)
Andersen, A., Benn, C.S., Jørgensen, M.J., Ravn, H.: Censored correlated cytokine concentrations: multivariate tobit regression using clustered variance estimation. Stat. Med. 32(16), 2859–2874 (2012)
Alejo, J., Montes-Rojas, G.: Quantile regression under limited dependent variable (2021). arxiv:2112.06822
Li, S., Hu, T., Tong, T., Sun, J.: Semiparametric regression analysis of multivariate doubly censored data. Stat. Model. 20(5), 502–526 (2019)
Chen, H., Quandt, S.A., Grzywacz, J.G., Arcury, T.A.: A Bayesian multiple imputation method for handling longitudinal pesticide data with values below the limit of detection. Environmetrics 24(2), 132–142 (2012)
Tanner, M.A., Wong, W.H.: The calculation of posterior distributions by data augmentation. J. Amer. Stat. Assoc. 82(398), 528–540 (1987)
Chib, S.: Bayes inference in the tobit censored regression model. J. Econ. 51(1), 79–99 (1992)
Zeger, S.L., Brookmeyer, R.: Regression analysis with censored autocorrelated data. J. Amer. Stat. Assoc. 81(395), 722–729 (1986)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc.: Ser. B 39(1), 1–22 (1977)
Lockwood, J.R., Schervish, M.J.: MCMC strategies for computing Bayesian predictive densities for censored multivariate data. J. Comput. Graph. Stat. 14(2), 395–414 (2005)
Muthén, B.: Moments of the censored and truncated bivariate normal distribution. Br. J. Math. Stat. Psychol. 43(1), 131–143 (1990)
Johnson, D., Wichern, R.: Applied Multivariate Statistical Analysis. Pearson Prentice Hall, Upper Saddle River (2007)
Cohen, A.C.: Restriction and selection in samples from bivariate normal distributions. J. Amer. Stat. Assoc. 50(271), 884–893 (1955)
Tallis, G.M.: The moment generating function of the truncated multi-normal distribution. J. Roy. Stat. Soc.: Ser. B (Methodol.) 23(1), 223–229 (1961)
Breslaw, J.A.: Random sampling from a truncated multivariate normal distribution. Appl. Math. Lett. 7, 1–6 (1994)
Horrace, W.C.: Some results on the multivariate truncated normal distribution. J. Multivar. Anal. 94(1), 209–221 (2005)
Tiao, G.C., Zellner, A.: On the Bayesian estimation of multivariate regression. J. R. Stat. Soc.: Ser. B 26(2), 277–285 (1964)
Wishart, J.: The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A(1–2), 32–52 (1928)
Acknowledgements
This work is supported by Fundação Calouste Gulbenkian and the Center for Research and Development in Mathematics and Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT—Fundação para a Ciência e a Tecnologia), reference UIDB/04106/2020.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sousa, R., Pereira, I., Silva, M.E. (2022). Censored Multivariate Linear Regression Model. In: Bispo, R., Henriques-Rodrigues, L., Alpizar-Jara, R., de Carvalho, M. (eds) Recent Developments in Statistics and Data Science. SPE 2021. Springer Proceedings in Mathematics & Statistics, vol 398. Springer, Cham. https://doi.org/10.1007/978-3-031-12766-3_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-12766-3_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12765-6
Online ISBN: 978-3-031-12766-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)