Skip to main content

Censored Multivariate Linear Regression Model

  • Conference paper
  • First Online:
Recent Developments in Statistics and Data Science (SPE 2021)

Abstract

Often, real-life problems require modelling several response variables together. This work analyses a multivariate linear regression model when the data are censored. Censoring distorts the correlation structure of the underlying variables and increases the bias of the usual estimators. Thus, we propose three methods to deal with multivariate data under left censoring, namely Expectation Maximization (EM), Data Augmentation (DA) and Gibbs Sampler with Data Augmentation (GDA). Results from a simulation study show that both DA and GDA estimates are consistent for low and moderate correlation. Under high correlation scenarios, EM estimates present a lower bias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The generalization of this study to more than one independent variable is trivial for DA and GDA. However, the computation of the EM estimates may be hindered by the need to obtain the moments of the truncated multivariate distributions.

References

  1. Anderson: Multivariate Statistical Analy. Wiley, New York (2003)

    Google Scholar 

  2. Lee, G., Scott, C.: EM algorithms for multivariate gaussian mixture models with truncated and censored data. Comput. Stat. & Data Anal. 56(9), 2816–2829 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hopke, P.K., Liu, C., Rubin, D.B.: Multiple imputation for multivariate data with missing and below-threshold measurements: time-series concentrations of pollutants in the arctic. Biometrics 57(1), 22–33 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andersen, A., Benn, C.S., Jørgensen, M.J., Ravn, H.: Censored correlated cytokine concentrations: multivariate tobit regression using clustered variance estimation. Stat. Med. 32(16), 2859–2874 (2012)

    Article  MathSciNet  Google Scholar 

  5. Alejo, J., Montes-Rojas, G.: Quantile regression under limited dependent variable (2021). arxiv:2112.06822

  6. Li, S., Hu, T., Tong, T., Sun, J.: Semiparametric regression analysis of multivariate doubly censored data. Stat. Model. 20(5), 502–526 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, H., Quandt, S.A., Grzywacz, J.G., Arcury, T.A.: A Bayesian multiple imputation method for handling longitudinal pesticide data with values below the limit of detection. Environmetrics 24(2), 132–142 (2012)

    Article  MathSciNet  Google Scholar 

  8. Tanner, M.A., Wong, W.H.: The calculation of posterior distributions by data augmentation. J. Amer. Stat. Assoc. 82(398), 528–540 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chib, S.: Bayes inference in the tobit censored regression model. J. Econ. 51(1), 79–99 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zeger, S.L., Brookmeyer, R.: Regression analysis with censored autocorrelated data. J. Amer. Stat. Assoc. 81(395), 722–729 (1986)

    MathSciNet  MATH  Google Scholar 

  11. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc.: Ser. B 39(1), 1–22 (1977)

    Google Scholar 

  12. Lockwood, J.R., Schervish, M.J.: MCMC strategies for computing Bayesian predictive densities for censored multivariate data. J. Comput. Graph. Stat. 14(2), 395–414 (2005)

    Article  MathSciNet  Google Scholar 

  13. Muthén, B.: Moments of the censored and truncated bivariate normal distribution. Br. J. Math. Stat. Psychol. 43(1), 131–143 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Johnson, D., Wichern, R.: Applied Multivariate Statistical Analysis. Pearson Prentice Hall, Upper Saddle River (2007)

    MATH  Google Scholar 

  15. Cohen, A.C.: Restriction and selection in samples from bivariate normal distributions. J. Amer. Stat. Assoc. 50(271), 884–893 (1955)

    MathSciNet  MATH  Google Scholar 

  16. Tallis, G.M.: The moment generating function of the truncated multi-normal distribution. J. Roy. Stat. Soc.: Ser. B (Methodol.) 23(1), 223–229 (1961)

    MathSciNet  MATH  Google Scholar 

  17. Breslaw, J.A.: Random sampling from a truncated multivariate normal distribution. Appl. Math. Lett. 7, 1–6 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Horrace, W.C.: Some results on the multivariate truncated normal distribution. J. Multivar. Anal. 94(1), 209–221 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tiao, G.C., Zellner, A.: On the Bayesian estimation of multivariate regression. J. R. Stat. Soc.: Ser. B 26(2), 277–285 (1964)

    Google Scholar 

  20. Wishart, J.: The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A(1–2), 32–52 (1928)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Fundação Calouste Gulbenkian and the Center for Research and Development in Mathematics and Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT—Fundação para a Ciência e a Tecnologia), reference UIDB/04106/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney Sousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sousa, R., Pereira, I., Silva, M.E. (2022). Censored Multivariate Linear Regression Model. In: Bispo, R., Henriques-Rodrigues, L., Alpizar-Jara, R., de Carvalho, M. (eds) Recent Developments in Statistics and Data Science. SPE 2021. Springer Proceedings in Mathematics & Statistics, vol 398. Springer, Cham. https://doi.org/10.1007/978-3-031-12766-3_20

Download citation

Publish with us

Policies and ethics