Skip to main content

Developing a System for Sectorization: An Overview

  • Conference paper
  • First Online:
Operational Research (IO 2021)

Abstract

Sectorization is the partition of a set or region into smaller parts, taking into account certain objectives. Sectorization problems appear in real-life situations, such as school or health districting, logistic planning, maintenance operations or transportation. The diversity of applications, the complexity of the problems and the difficulty in finding good solutions warrant sectorization as a relevant research area. Decision Support Systems (DSS) are computerised information systems that may provide quick solutions to decision-makers and researchers and allow for observing differences between various scenarios. The paper is an overview of the development of a DSS for Sectorization, its extent, architecture, implementation steps and benefits. It constitutes a quite general system, for it handles various types of problems, which the authors grouped as (i) basic sectorization problems; (ii) sectorization problems with service centres; (iii) re-sectorization problems; and (iv) dynamic sectorization problems. The new DSS is expected to facilitate the resolution of various practitioners’ problems and support researchers, academics and students in sectorization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bergey, P.K., Ragsdale, C.T., Hoskote, M.: A decision support system for the electrical power districting problem. Decis. Support Syst. 36(1), 1–17 (2003)

    Article  MATH  Google Scholar 

  2. Bouzarth, E.L., Forrester, R., Hutson, K.R., Reddoch, L.: Assigning students to schools to minimize both transportation costs and socioeconomic variation between schools. Socioecon. Plann. Sci. 64, 1–8 (2018)

    Article  Google Scholar 

  3. Bozkaya, B., Erkut, E., Laporte, G.: A tabu search heuristic and adaptive memory procedure for political districting. Eur. J. Oper. Res. 144(1), 12–26 (2003)

    Article  MATH  Google Scholar 

  4. Bozkaya, B., Erkut, E., Haight, D., Laporte, G.: Designing new electoral districts for the city of edmonton. Interfaces 41, 534–547 (2011)

    Article  Google Scholar 

  5. Brown, E.C., Vroblefski, M.: A grouping genetic algorithm for the microcell sectorization problem. Eng. Appl. Artif. Intell. 17(6), 589–598 (2004)

    Article  Google Scholar 

  6. Camacho-Collados, M., Liberatore, F., Angulo, J.M.: A multi-criteria police districting problem for the efficient and effective design of patrol sector. Eur. J. Oper. Res. 246(2), 674–684 (2015)

    Article  MATH  Google Scholar 

  7. De Assis, L.S., Franca, P.M., Usberti, F.L.: A redistricting problem applied to meter reading in power distribution networks. Comput. Oper. Res. 41, 65–75 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  9. Degtyarev, O., Minaenko, V., Orekhov, M.: Solution of sectorization problems for an air traffic control area. i. basic principles and questions of airspace sectorization and its formalization as an optimization problem. J. Comput. Syst. Sci. Int. 48(3), 384–400 (2009)

    Google Scholar 

  10. Di Nardo, A., Di Natale, M., Santonastaso, G.F., Tzatchkov, V.G., Alcocer-Yamanaka, V.H.: Water network sectorization based on a genetic algorithm and minimum dissipated power paths. Water Sci. Technol.: Water Supply 13(4), 951–957 (2013)

    Google Scholar 

  11. Edenius, L., Elfving, B., Eriksson, L.O., Sonesson, J., Wallerman, J., Waller, C., et al.: The heureka forestry decision support system: an overview. Math. Comput. For. Nat. Resour. Sci. 3(2) (2011)

    Google Scholar 

  12. Farughi, H., Mostafayi, S., Arkat, J.: Healthcare districting optimization using gray wolf optimizer and ant lion optimizer algorithms (case study: South khorasan healthcare system in Iran). J. Optim. Ind. Eng. 12(1), 119–131 (2019)

    Google Scholar 

  13. Farughi, H., Tavana, M., Mostafayi, S., Santos Arteaga, F.J.: A novel optimization model for designing compact, balanced, and contiguous healthcare districts. J. Oper. Res. Soc. 71(11), 1740–1759 (2020)

    Article  Google Scholar 

  14. Ferland, J.A., Guénette, G.: Decision support system for the school districting problem. Oper. Res. 38(1), 15–21 (1990)

    Article  Google Scholar 

  15. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning (1988)

    Google Scholar 

  16. Jahuira, C., Cuadros-Vargas, E.: Solving the tsp by mixing gas with minimal spanning tree. Sociedad Peruana de Computacion, II-3, pp. 123–133 (2003)

    Google Scholar 

  17. Kalcsics, J., Nickel, S., Schröder, M.: Towards a unified territorial design approach-applications, algorithms and GIS integration. TOP 13(1), 1–56 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim, M.J.: Multiobjective spanning tree based optimization model to political redistricting. Spat. Inf. Res. 26(3), 317–325 (2018)

    Article  Google Scholar 

  19. Labelle, A., Langevin, A., Campbell, J.F.: Sector design for snow removal and disposal in urban areas. Socioecon. Plann. Sci. 36(3), 183–202 (2002)

    Article  Google Scholar 

  20. Lei, H., Wang, R., Laporte, G.: Solving a multi-objective dynamic stochastic districting and routing problem with a co-evolutionary algorithm. Comput. Oper. Res. 67, 12–24 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mourão, M.C., Nunes, A.C., Prins, C.: Heuristic methods for the sectoring arc routing problem. Eur. J. Oper. Res. 196(3), 856–868 (2009)

    Article  MATH  Google Scholar 

  22. Moynihan, G.P., Raj, P.S., Sterling, J.U., Nichols, W.G.: Decision support system for strategic logistics planning. Comput. Ind. 26(1), 75–84 (1995)

    Article  Google Scholar 

  23. Murray, A.T.: Spatial restrictions in harvest scheduling. For. Sci. 45(1), 45–52 (1999)

    Google Scholar 

  24. Noorian, S.S., Murphy, C.E.: Balanced allocation of multi-criteria geographic areas by a genetic algorithm. In: International Cartographic Conference, pp. 417–433. Springer, Berlin (2017)

    Google Scholar 

  25. Pan, Q., Castro-Gama, M.E., Jonoski, A., Popescu, I.: Decision support system for daily and long term operations of the system of Milan, Italy. Procedia Eng. 154, 58–61 (2016)

    Article  Google Scholar 

  26. Ramachandra, T., George, V., Vamsee, K.S., Purnima, G.: Decision support system for regional electricity planning. Energ. Educ. Sci. Technol. 17(1/2), 7 (2006)

    Google Scholar 

  27. Richards, E.W., Gunn, E.A.: Tabu search design for difficult forest management optimization problems. Can. J. For. Res. 33(6), 1126–1133 (2003)

    Article  Google Scholar 

  28. Ríos-Mercado, R.Z., Bard, J.F.: An exact algorithm for designing optimal districts in the collection of waste electric and electronic equipment through an improved reformulation. Eur. J. Oper. Res. 276(1), 259–271 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Saaty, T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15(3), 234–281 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  30. Saaty, T.L.: The Analytical Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGrawrHill International Book Co, London, England (1980)

    MATH  Google Scholar 

  31. Saaty, T.L.: Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1(1), 83–98 (2008)

    Google Scholar 

  32. Sprague Jr., R.H., Carlson, E.D.: Building effective decision support systems. Prentice Hall Professional Technical Reference (1982)

    Google Scholar 

  33. Stamatopoulos, M.A., Zografos, K.G., Odoni, A.R.: A decision support system for airport strategic planning. Transp. Res. Part C: Emerg. Technol. 12(2), 91–117 (2004)

    Article  Google Scholar 

  34. Tang, J., Alam, S., Lokan, C., Abbass, H.A.: A multi-objective approach for dynamic airspace sectorization using agent based and geometric models. Transp. Res. Part C: Emerg. Technol. 21(1), 89–121 (2012)

    Article  Google Scholar 

  35. Turban, E., Aronson, J.E., Liang, T.P.: Decision Support Systems and Intelligent Systems Edisi 7 Jilid 1. Andi, Yogyakarta (2005)

    Google Scholar 

  36. Varma, V.K., Ferguson, I., Wild, I.: Decision support system for the sustainable forest management. For. Ecol. Manage. 128(1–2), 49–55 (2000)

    Article  Google Scholar 

  37. Weigang, L., de Souza, B.B., Crespo, A.M.F., Alves, D.P.: Decision support system in tactical air traffic flow management for air traffic flow controllers. J. Air Transp. Manag. 14(6), 329–336 (2008)

    Article  Google Scholar 

  38. Yanık, S., Kalcsics, J., Nickel, S., Bozkaya, B.: A multi-period multi-criteria districting problem applied to primary care scheme with gradual assignment. Int. Trans. Oper. Res. 26(5), 1676–1697 (2019)

    Article  MathSciNet  Google Scholar 

  39. Zhang, K., Yan, H., Zeng, H., Xin, K., Tao, T.: A practical multi-objective optimization sectorization method for water distribution network. Sci. Total Environ. 656, 1401–1412 (2019)

    Article  Google Scholar 

  40. Zou, X., Cheng, P., An, B., Song, J.: Sectorization and configuration transition in airspace design. Math. Probl. Eng. (2016)

    Google Scholar 

Download references

Acknowledgements

This work is financed by the ERDF - European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project “POCI-01-0145-FEDER-031671”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Göksu Öztürk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Göksu Öztürk, E. et al. (2023). Developing a System for Sectorization: An Overview. In: Almeida, J.P., Geraldes, C.S., Lopes, I.C., Moniz, S., Oliveira, J.F., Pinto, A.A. (eds) Operational Research. IO 2021. Springer Proceedings in Mathematics & Statistics, vol 411. Springer, Cham. https://doi.org/10.1007/978-3-031-20788-4_9

Download citation

Publish with us

Policies and ethics