Skip to main content

Computational Procedures for Improving Extreme Value Estimation in Time Series Modelling

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

In the last decades, some work has been developed in parameter estimation of extreme values jointly with time series analysis. Those results show relevant asymptotic properties. However, for finite samples, limiting results provide approximations that can be poor. Some challenges have been developed by combining Extreme Value Theory and time series modelling to obtain more reliable extreme value parameter estimates. In classical time series modelling a key issue is to determine how many parameters must be included in the model. Special care must be given to extreme events in the series that need specific statistical procedures based on the behaviour of extremes. Resampling procedures such as the jackknife and the bootstrap have been used to improve parameters estimation in Extreme Value Theory combined with time series modelling. New approaches, based on bootstrap procedures are shown and are illustrated with a real data set using the   software.

This work is funded by national funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00006/2020 (CEAUL), UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Download at “http://snirh.apambiente.pt”.

References

  1. Fraga Alves, M.I., Gomes, M.I., de Haan, L.: A new class of semi-parametric estimators of the second order parameter. Portugaliae Math. 60(2), 193–214 (2003)

    Google Scholar 

  2. Caeiro, F., Gomes, M.I., Pestana, D.: Direct reduction of bias of the classical hill estimator. REVSTAT-Stat. J. 3(2), 113–136 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Carlstein, E.: The use of subseries values for estimating the variance of a general statistic from a stationary sequence. Ann. Stat. 14(3), 1171–1179 (1986). https://doi.org/10.1214/aos/1176350057

  4. Cordeiro, C., Neves, M.M.: Forecasting time series with boot.expos procedure. REVSTAT-Stat. J. 7(2), 135–149 (2009)

    Google Scholar 

  5. Cordeiro, C., Neves, M.M.: Boot.EXPOS in NNGC competition. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2010). https://doi.org/10.1109/ijcnn.2010.5596361

  6. Cordeiro, C., Prata Gomes, D., Neves, M.M.: Time series procedures to improve extreme quantile estimation. In: Statistical Modelling and Risk Analysis: Selected contributions from ICRA9, Springer Proceedings in Mathematics & Statistics, submitted. Springer (2023)

    Google Scholar 

  7. Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7(1) (1979). https://doi.org/10.1214/aos/1176344552

  8. Efron, B.: Estimation and accuracy after model selection. J. Am. Stat. Assoc. 109(507), 991–1007 (2014). https://doi.org/10.1080/01621459.2013.823775

    Article  MathSciNet  MATH  Google Scholar 

  9. Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Math. Proc. Cambr. Philos. Soc. 24(2), 180–190 (1928). https://doi.org/10.1017/s0305004100015681

    Article  MATH  Google Scholar 

  10. Fréchet, M.: Sur la loi de probabilité de l’écart maximum. Ann. Soc. Math. Polon. 6, 93–116 (1927)

    MATH  Google Scholar 

  11. Gnedenko, B.: Sur la distribution limite du terme maximum d’une serie aleatoire. Ann. Math. 44(3), 423–453 (1943). https://doi.org/10.2307/1968974

    Article  MathSciNet  MATH  Google Scholar 

  12. Gomes, M.I., Martins, M.J.: “asymptotically unbiased” estimators of the tail index based on external estimation of the second order parameter. Extremes 5(1), 5–31 (2002). https://doi.org/10.1023/a:1020925908039

  13. Gumbel, E.: Les valeurs extrêmes des distributions statistiques. Ann.de l’institut Henri Poincaré 5(2), 115–158 (1935)

    MATH  Google Scholar 

  14. Haan, L.: Regular variation and its application to the weak convergence of sample extremes. Math. Centre Tracts 32 (1970)

    Google Scholar 

  15. Hall, P.: Resampling a coverage pattern. Stoch. Process. Appl. 20(2), 231–246 (1985). https://doi.org/10.1016/0304-4149(85)90212-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3(5) (1975). https://doi.org/10.1214/aos/1176343247

  17. Hyndman, R., et al.: forecast: Forecasting functions for time series and linear models (2023). https://pkg.robjhyndman.com/forecast/, R package version 8.21

  18. Hyndman, R., Athanasopoulos, G.: Forecasting: Principles and Practice, 2nd edn. OTexts, Australia (2018)

    Google Scholar 

  19. Krause, J.: Introduction to Bootstrap. Apress (2016). https://doi.org/10.1007/978-1-4842-2382-6-2

  20. Kunsch, H.R.: The jackknife and the bootstrap for general stationary observations. Ann. Stat. 17(3) (1989). https://doi.org/10.1214/aos/1176347265

  21. Leadbetter, M.R.: Extremes and local dependence in stationary sequences. Tech. rep. (1982). https://doi.org/10.21236/ada120180

  22. Liu, R.Y.: Moving blocks jackknife and bootstrap capture weak dependence. Explor. Limits Bootstrap (1992)

    Google Scholar 

  23. Loynes, R.M.: Extreme values in uniformly mixing stationary stochastic processes. Ann. Math. Stat. 36(3), 993–999 (1965). https://doi.org/10.1214/aoms/1177700071

    Article  MathSciNet  MATH  Google Scholar 

  24. Mises, R.V.: La distribution de la plus grande de n valeurs. Rev. Math. Union Interbalcanique 1, 141–160 (1936)

    Google Scholar 

  25. Newell, G.F.: Asymptotic extremes for \(m\)-dependent random variables. Ann. Math. Stat. 35(3), 1322–1325 (1964). https://doi.org/10.1214/aoms/1177703288

    Article  MathSciNet  MATH  Google Scholar 

  26. O’Brien, G.L.: The maximum term of uniformly mixing stationary processes. Adv. Appl. Prob. 7(2), 248–248 (1975). https://doi.org/10.1017/s0001867800045729

    Article  Google Scholar 

  27. Quenouille, M.H.: Approximate tests of correlation in time-series. J. R. Stat. Soc. Series B (Methodol.) 11(1), 68–84 (1949). https://doi.org/10.1111/j.2517-6161.1949.tb00023.x

    Article  MathSciNet  MATH  Google Scholar 

  28. Quenouille, M.H.: Notes on bias in estimation. Biometrika 43(3/4), 353 (1956). https://doi.org/10.2307/2332914

    Article  MathSciNet  MATH  Google Scholar 

  29. Singh, K.: On the asymptotic accuracy of Efron’s bootstrap. Ann. Stat. 9(6), 1187–1195 (1981). https://doi.org/10.1214/aos/1176345636

    Article  MathSciNet  MATH  Google Scholar 

  30. Stephenson, A.G.: EVD: extreme value distributions. R News 2(2) (2002). https://CRAN.R-project.org/doc/Rnews/

  31. Tukey, J.: Bias and confidence in not quite large samples. Ann. Math. Statist. 29, 614 (1958)

    Google Scholar 

  32. Weissman, I.: Estimation of parameters and large quantiles based on the k largest observations. J. Am. Stat. Assoc. 73(364), 812–815 (1978). https://doi.org/10.1080/01621459.1978.10480104

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the three referees for their constructive comments and valuable suggestions, which led to substantial improvements to this work. Clara Cordeiro and Manuela Neves are partially financed by national funds through FCT - Fundação para a Ciência e a Tecnologia under the project UIDB/00006/2020 (CEAUL). This work is funded by national funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora Prata Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gomes, D.P., Cordeiro, C., Neves, M. (2023). Computational Procedures for Improving Extreme Value Estimation in Time Series Modelling. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14105. Springer, Cham. https://doi.org/10.1007/978-3-031-37108-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37108-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37107-3

  • Online ISBN: 978-3-031-37108-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics