Skip to main content

Unravelling the Influence of Endocrine-Disrupting Chemicals on Obesity Pathophysiology Pathways

  • Chapter
  • First Online:
Obesity and Lipotoxicity

Abstract

Obesity represents a global health concern, affecting individuals of all age groups across the world. The prevalence of excess weight and obesity has escalated to pandemic proportions, leading to a substantial increase in the incidence of various comorbidities, such as cardiovascular diseases, type 2 diabetes, and cancer. This chapter seeks to provide a comprehensive exploration of the pathways through which endocrine-disrupting chemicals can influence the pathophysiology of obesity. These mechanisms encompass aspects such as the regulation of food intake and appetite, intestinal fat absorption, lipid metabolism, and the modulation of inflammation. This knowledge may help to elucidate the role of exogenous molecules in both the aetiology and progression of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad B, Serpell CJ, Fong IL, Wong EH (2020) Molecular mechanisms of adipogenesis: the anti-adipogenic role of AMP-activated protein kinase. Front Mol Biosci 7(76)

    Google Scholar 

  • Ahmed RG (2016) Maternal bisphenol A alters fetal endocrine system: thyroid adipokine dysfunction. Food Chem Toxicol 95:168–174

    CAS  PubMed  Google Scholar 

  • Amato AA, Wheeler HB, Blumberg B (2021) Obesity and endocrine-disrupting chemicals. Endocr Connect 10(2):R87–R105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arner P, Rydén M (2022) Human white adipose tissue: a highly dynamic metabolic organ. J Intern Med 291(5):611–621

    CAS  PubMed  Google Scholar 

  • Arsenescu V, Arsenescu RI, King V, Swanson H, Cassis LA (2008) Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ Health Perspect 116(6):761–768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baillie-Hamilton PF (2002) Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med 8(2):185–192

    PubMed  Google Scholar 

  • Bansal A, Henao-Mejia J, Simmons RA (2018) Immune system: an emerging player in mediating effects of endocrine disruptors on metabolic health. Endocrinology 159(1):32–45

    CAS  PubMed  Google Scholar 

  • Bansal A, Rashid C, Xin F, Li C, Polyak E, Duemler A, Van Der Meer T, Stefaniak M, Wajid S, Doliba N, Bartolomei MS, Simmons RA (2017) Sex- and dose-specific effects of maternal bisphenol A exposure on pancreatic islets of first- and second-generation adult mice offspring. Environ Health Perspect 125(9):097022

    PubMed  PubMed Central  Google Scholar 

  • Bateman ME, Strong AL, Mclachlan JA, Burow ME, Bunnell BA (2017) The effects of endocrine disruptors on adipogenesis and osteogenesis in mesenchymal stem cells: a review. Front Endocrinol 7(171)

    Google Scholar 

  • Bernal K, Touma C, Erradhouani C, Boronat-Belda T, Gaillard L, Al Kassir S, Le Mentec H, Martin-Chouly C, Podechard N, Lagadic-Gossmann D, Langouet S, Brion F, Knoll-Gellida A, Babin PJ, Sovadinova I, Babica P, Andreau K, Barouki R, Vondracek J, Alonso-Magdalena P, Blanc E, Kim MJ, Coumoul X (2022) Combinatorial pathway disruption is a powerful approach to delineate metabolic impacts of endocrine disruptors. FEBS Lett 596(24):3107–3123

    CAS  PubMed  Google Scholar 

  • Bo E, Farinetti A, Marraudino M, Sterchele D, Eva C, Gotti S, Panzica G (2016) Adult exposure to tributyltin affects hypothalamic neuropeptide Y, Y1 receptor distribution, and circulating leptin in mice. Andrology 4(4):723–734

    CAS  PubMed  Google Scholar 

  • Booth A, Magnuson A, Fouts J, Foster MT (2016) Adipose tissue: an endocrine organ playing a role in metabolic regulation. Horm Mol Biol Clin Invest 26(1):25–42

    CAS  Google Scholar 

  • Brownstein AJ, Veliova M, Acin-Perez R, Liesa M, Shirihai OS (2022) ATP-consuming futile cycles as energy dissipating mechanisms to counteract obesity. Rev Endocr Metab Disord 23(1):121–131

    CAS  PubMed  Google Scholar 

  • Carrillo JLM, Campo JOMD, Coronado OG, Gutiérrez PTV, Cordero JFC, Juárez JV (2018) Adipose tissue and inflammation. In: Tissue A (ed) Leszek, S. IntechOpen, Rijeka

    Google Scholar 

  • Cero C, Lea HJ, Zhu KY, Shamsi F, Tseng YH, Cypess AM (2021) β3-Adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis. JCI Insight 6(11):e139160

    PubMed  PubMed Central  Google Scholar 

  • Chait A, Den Hartigh LJ (2020) Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med 7(22)

    Google Scholar 

  • Chau MD, Gao J, Yang Q, Wu Z, Gromada J (2010) Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc Natl Acad Sci USA 107(28):12553–12558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng CF, Ku HC, Lin H (2018) PGC-1α as a pivotal factor in lipid and metabolic regulation. Int J Mol Sci 19(11):3447

    PubMed  PubMed Central  Google Scholar 

  • Cifuentes L, Acosta A (2022) Homeostatic regulation of food intake. Clin Res Hepatol Gastroenterol 46(2):101794

    CAS  PubMed  Google Scholar 

  • Dalton M, Finlayson G, Esdaile E, King N (2013) Appetite, satiety, and food reward in obese individuals: a behavioral phenotype approach. Curr Nutr Rep 2:207–215

    Google Scholar 

  • Dinas PC, Lahart IM, Timmons JA, Svensson PA, Koutedakis Y, Flouris AD, Metsios GS (2017) Effects of physical activity on the link between PGC-1a and FNDC5 in muscle, circulating Ιrisin and UCP1 of white adipocytes in humans: a systematic review. F1000 Res 6(286)

    Google Scholar 

  • Domondon M, Nikiforova AB, Deleon-Pennell KY, Ilatovskaya DV (2019) Regulation of mitochondria function by natriuretic peptides. Am J Physiol Renal Physiol 317(5):F1164–F1168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drobna Z, Talarovicova A, Schrader HE, Fennell TR, Snyder RW, Rissman EF (2019) Bisphenol F has different effects on preadipocytes differentiation and weight gain in adult mice as compared with Bisphenol A and S. Toxicology 420:66–72

    CAS  PubMed  Google Scholar 

  • El-Atta HMA, Ahmed ER (2018) Study of the in-vitro epigenetic toxicity effects of malaoxon, malathion dicarboxylic acid, cadmium chloride and bisphenol-A on PPAR γ, PPIA and aP2 gene expressions. J Clin Toxicol 8(3):1–5

    Google Scholar 

  • Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y (2017) Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci 13(4):851–863

    CAS  PubMed  Google Scholar 

  • European Commission (2023) Endocrine disruptors [Online]. Available: https://commission.europa.eu/strategy-and-policy/policies/endocrine-disruptors_en#objectives. Accessed 16 Sept 2023

  • Finck BN, Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116(3):615–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisk HL, Childs CE, Miles EA, Ayres R, Noakes PS, Paras-Chavez C, Kuda O, Kopecký J, Antoun E, Lillycrop KA, Calder PC (2022) Modification of subcutaneous white adipose tissue inflammation by omega-3 fatty acids is limited in human obesity-a double blind, randomised clinical trial. EBioMedicine 77:103909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Francis CE, Allee L, Nguyen H, Grindstaff RD, Miller CN, Rayalam S (2021) Endocrine disrupting chemicals: friend or foe to brown and beige adipose tissue? Toxicology 463:152972

    CAS  PubMed  Google Scholar 

  • Frühbeck G, Méndez-Giménez L, Fernández-Formoso JA, Fernández S, Rodríguez A (2014) Regulation of adipocyte lipolysis. Nutr Res Rev 27(1):63–93

    PubMed  Google Scholar 

  • Fu J, Li Z, Zhang H, Mao Y, Wang A, Wang X, Zou Z, Zhang X (2015) Molecular pathways regulating the formation of brown-like adipocytes in white adipose tissue. Diabetes Metab Res Rev 31(5):433–452

    CAS  PubMed  Google Scholar 

  • Gagelin A, Largeau C, Masscheleyn S, Piel MS, Calderón-Mora D, Bouillaud F, Hénin J, Miroux B (2023) Molecular determinants of inhibition of UCP1-mediated respiratory uncoupling. Nat Commun 14(1):2594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaben AL, Scherer PE (2019) Adipogenesis and metabolic health. Nat Rev Mol Cell Biol 20(4):242–258

    CAS  PubMed  Google Scholar 

  • Grabner GF, Xie H, Schweiger M, Zechner R (2021) Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 3(11):1445–1465

    CAS  PubMed  Google Scholar 

  • Guerra IMS, Ferreira HB, Melo T, Rocha H, Moreira S, Diogo L, Domingues MR, Moreira ASP (2022) Mitochondrial fatty acid β-oxidation disorders: from disease to lipidomic studies – a critical review. Int J Mol Sci 23(22):13933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Kumar P, Fahmi N, Garg B, Dutta S, Sachar S, Matharu AS, Vimaleswaran KS (2020) Endocrine disruption and obesity: a current review on environmental obesogens. Curr Res Green Sustain Chem 3:100009

    Google Scholar 

  • Hafidi ME, Buelna-Chontal M, Sánchez-Muñoz F, Carbó R (2019) Adipogenesis: a necessary but harmful strategy. Int J Mol Sci 20(15):3657

    PubMed  PubMed Central  Google Scholar 

  • Haugen F, Drevon CA (2007) The interplay between nutrients and the adipose tissue: plenary lecture. Proc Nutr Soc 66(2):171–182

    CAS  PubMed  Google Scholar 

  • Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G 3rd, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B (2022) Obesity II: establishing causal links between chemical exposures and obesity. Biochem Pharmacol 199:115015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henningsen JB, Scheele C (2021) Brown adipose tissue: a metabolic regulator in a hypothalamic cross talk? Annu Rev Physiol 83:279–301

    CAS  PubMed  Google Scholar 

  • Hildebrandt X, Ibrahim M, Peltzer N (2023) Cell death and inflammation during obesity: “Know my methods, WAT(son)”. Cell Death Differ 30(2):279–292

    CAS  PubMed  Google Scholar 

  • Hong X, Zhou Y, Zhu Z, Li Y, Li Z, Zhang Y, Hu X, Zhu F, Wang Y, Fang M, Huang Y, Shen T (2023) Environmental endocrine disruptor Bisphenol A induces metabolic derailment and obesity via upregulating IL-17A in adipocytes. Environ Int 172:107759

    CAS  PubMed  Google Scholar 

  • Howell G, Mangum L (2011) Exposure to bioaccumulative organochlorine compounds alters adipogenesis, fatty acid uptake, and adipokine production in NIH3T3-L1 cells. Toxicol In Vitro 25(1):394–402

    CAS  PubMed  Google Scholar 

  • Hsu HF, Tsou TC, Chao HR, Kuo YT, Tsai FY, Yeh SC (2010) Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin-induced glucose uptake in 3T3-L1 cells. J Hazard Mater 182:649–655

    CAS  PubMed  Google Scholar 

  • Hsu JW, Nien CY, Yeh SC, Tsai FY, Chen HW, Lee TS, Chen SL, Kao YH, Tsou TC (2020) Phthalate exposure causes browning-like effects on adipocytes in vitro and in vivo. Food Chem Toxicol 142:111487

    CAS  PubMed  Google Scholar 

  • Hu Q, Guan XQ, Song LL, Wang HN, Xiong Y, Liu JL, Yin H, Cao YF, Hou J, Yang L, Ge GB (2020) Inhibition of pancreatic lipase by environmental xenoestrogens. Ecotoxicol Environ Saf 192:110305

    CAS  PubMed  Google Scholar 

  • Hussain MM (2014) Intestinal lipid absorption and lipoprotein formation. Curr Opin Lipidol 25(3):200–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang N, Li Y, Shu T, Wang J (2019) Cytokines and inflammation in adipogenesis: an updated review. Front Med 13(3):314–329

    PubMed  Google Scholar 

  • Jiang N, Yang M, Han Y, Zhao H, Sun L (2022) Prdm16 regulating adipocyte transformation and thermogenesis: a promising therapeutic target for obesity and diabetes. Front Pharmacol 13:870250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Lin X, Miao W, Wu T, Shen H, Chen S, Li Y, Pan Q, Fu Z (2014) Chronic exposure of mice to environmental endocrine-disrupting chemicals disturbs their energy metabolism. Toxicol Lett 225(3):392–400

    CAS  PubMed  Google Scholar 

  • Jung SM, Sanchez-Gurmaches J, Guertin DA (2019) Brown adipose tissue development and metabolism. Handb Exp Pharmacol 251:3–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kashiwagi Y, Komukai K, Kimura H, Okuyama T, Maehara T, Fukushima K, Kamba T, Oki Y, Shirasaki K, Kubota T, Miyanaga S, Nagoshi T, Yoshimura M (2020) Therapeutic hypothermia after cardiac arrest increases the plasma level of B-type natriuretic peptide. Sci Rep 10(1):15545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai T, Autieri MV, Scalia R (2021) Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol 320(3):C375–C391

    CAS  PubMed  Google Scholar 

  • Kim JY, Nasr A, Tfayli H, Bacha F, Michaliszyn SF, Arslanian S (2017) Increased lipolysis, diminished adipose tissue insulin sensitivity, and impaired β-cell function relative to adipose tissue insulin sensitivity in obese youth with impaired glucose tolerance. Diabetes 66(12):3085–3090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Min J, Pelloux V, Guyot E, Tordjman J, Bui L-C, Chevallier A, Forest C, Benelli C, Clément K, Barouki R (2012) Inflammatory pathway genes belong to major targets of persistent organic pollutants in adipose cells. Environ Health Perspect 120(4):508–514

    PubMed  PubMed Central  Google Scholar 

  • Kowalczyk M, Piwowarski JP, Wardaszka A, Średnicka P, Wójcicki M, Juszczuk-Kubiak E (2023) Application of in vitro models for studying the mechanisms underlying the obesogenic action of endocrine-disrupting chemicals (EDCs) as food contaminants – a review. Int J Mol Sci 24(2):1083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Magueresse-Battistoni B (2020) Adipose tissue and endocrine-disrupting chemicals: does sex matter? Int J Environ Res Public Health 17(24):9403

    PubMed  PubMed Central  Google Scholar 

  • Lebrun LJ, Moreira Milheiro S, Tavernier A, Niot I (2022) Postprandial consequences of lipid absorption in the onset of obesity: role of intestinal CD36. Biochim Biophys Acta Mol Cell Biol Lipids 1867(7):159154

    CAS  PubMed  Google Scholar 

  • Lee KI, Chiang CW, Lin HC, Zhao JF, Li CT, Shyue SK, Lee TS (2016) Maternal exposure to di-(2-ethylhexyl) phthalate exposure deregulates blood pressure, adiposity, cholesterol metabolism and social interaction in mouse offspring. Arch Toxicol 90(5):1211–1224

    CAS  PubMed  Google Scholar 

  • Lee S, Karvonen-Gutierrez C, Mukherjee B, Herman WH, Park SK (2022) Race-specific associations of urinary phenols and parabens with adipokines in midlife women: the Study of Women’s Health Across the Nation (SWAN). Environ Pollut 303:119164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levy E, Beaulieu JF, Spahis S (2021) From congenital disorders of fat malabsorption to understanding intra-enterocyte mechanisms behind chylomicron assembly and secretion. Front Physiol 12:629222

    PubMed  PubMed Central  Google Scholar 

  • Li X, Liu Q, Pan Y, Chen S, Zhao Y, Hu Y (2023) New insights into the role of dietary triglyceride absorption in obesity and metabolic diseases. Front Pharmacol 14:1097835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Li Z, Ngandiri DA, Llerins Perez M, Wolf A, Wang Y (2022) The molecular brakes of adipose tissue lipolysis. Front Physiol 13:826314

    PubMed  PubMed Central  Google Scholar 

  • Lin J-Y, Yin R-X (2023) Exposure to endocrine-disrupting chemicals and type 2 diabetes mellitus in later life. Expo Health 15:199–229

    CAS  Google Scholar 

  • Lind PM, Lind L (2018) Endocrine-disrupting chemicals and risk of diabetes: an evidence-based review. Diabetologia 61(7):1495–1502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Wang Y, Lin L (2019) Small molecules for fat combustion: targeting obesity. Acta Pharm Sin B 9(2):220–236

    PubMed  Google Scholar 

  • Liu S, Wang X, Zheng Q, Gao L, Sun Q (2022) Sleep deprivation and central appetite regulation. Nutrients 14(24):5196

    PubMed  PubMed Central  Google Scholar 

  • Lizcano F, Arroyave F (2020) Control of adipose cell browning and its therapeutic potential. Metabolites 10(11):471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes MFDS, Felix JDS, Scaramele NF, Almeida MC, Furlan ADO, Troiano JA, De Athayde FRF, Lopes FL (2023) Co-expression analysis of lncRNA and mRNA identifies potential adipogenesis regulatory non-coding RNAs involved in the transgenerational effects of tributyltin. PLoS One 18(2):e0281240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Li M, Wu C, Zhou C, Zhang J, Zhu Q, Shen T (2019) Bisphenol A promotes macrophage proinflammatory subtype polarization via upregulation of IRF5 expression in vitro. Toxicol In Vitro 60:97–106

    CAS  PubMed  Google Scholar 

  • Lv Q, Gao R, Peng C, Yi J, Liu L, Yang S, Li D, Hu J, Luo T, Mei M, Song Y, Wu C, Xiao X, Li Q (2017) Bisphenol A promotes hepatic lipid deposition involving Kupffer cells M1 polarization in male mice. J Endocrinol 234(2):143–154

    CAS  PubMed  Google Scholar 

  • Lv Z, Cheng J, Huang S, Zhang Y, Wu S, Qiu Y, Geng Y, Zhang Q, Huang G, Ma Q, Xie X, Zhou S, Wu T, Ke Y (2016) Dehp induces obesity and hypothyroidism through both central and peripheral pathways in C3H/He mice. Obesity 24(2):368–378

    CAS  PubMed  Google Scholar 

  • Mackay H, Patterson ZR, Khazall R, Patel S, Tsirlin D, Abizaid A (2013) Organizational effects of perinatal exposure to bisphenol-A and diethylstilbestrol on arcuate nucleus circuitry controlling food intake and energy expenditure in male and female CD-1 mice. Endocrinology 154(2):1465–1475

    CAS  PubMed  Google Scholar 

  • Malandrino MI, Fucho R, Weber M, Calderon-Dominguez M, Mir JF, Valcarcel L, Escoté X, Gómez-Serrano M, Peral B, Salvadó L, Fernández-Veledo S, Casals N, Vázquez-Carrera M, Villarroya F, Vendrell JJ, Serra D, Herrero L (2015) Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation. Am J Physiol Endocrinol Metab 308(9):E756–E769

    PubMed  Google Scholar 

  • Maliszewska K, Kretowski A (2021) Brown adipose tissue and its role in insulin and glucose homeostasis. Int J Mol Sci 22(4):1530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Man K, Kallies A, Vasanthakumar A (2022) Resident and migratory adipose immune cells control systemic metabolism and thermogenesis. Cell Mol Immunol 19(3):421–431

    CAS  PubMed  Google Scholar 

  • Martínez M, Blanco J, Rovira J, Kumar V, Domingo JL, Schuhmacher M (2020) Bisphenol A analogues (BPS and BPF) present a greater obesogenic capacity in 3T3-L1 cell line. Food Chem Toxicol 140:111298

    PubMed  Google Scholar 

  • Moris JM, Heinold C, Blades A, Koh Y (2022) Nutrient-based appetite regulation. J Obes Metabol Syndr 31(2):161–168

    Google Scholar 

  • Nadal A, Quesada I, Tudurí E, Nogueiras R, Alonso-Magdalena P (2017) Endocrine-disrupting chemicals and the regulation of energy balance. Nat Rev Endocrinol 13(9):536–546

    CAS  PubMed  Google Scholar 

  • Nieminen P, Lindström-Seppä P, Mustonen A-M, Mussalo-Rauhamaa H, Kukkonen JVK (2002) Bisphenol A affects endocrine physiology and biotransformation enzyme activities of the field vole (Microtus agrestis). Gen Comp Endocrinol 126(2):183–189

    CAS  PubMed  Google Scholar 

  • Nunez AA, Kannan K, Giesy JP, Fang J, Clemens LG (2001) Effects of Bisphenol A on energy balance and accumulation in brown adipose tissue in rats. Chemosphere 42(8):917–922

    CAS  PubMed  Google Scholar 

  • Palacios-Marin I, Serra D, Jimenez-Chillarón J, Herrero L, Todorčević M (2023) Adipose tissue dynamics: cellular and lipid turnover in health and disease. Nutrients 15(18):3968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandit R, Beerens S, Adan RAH (2017) Role of leptin in energy expenditure: the hypothalamic perspective. Am J Phys Regul Integr Comp Phys 312(6):R938–R947

    CAS  Google Scholar 

  • Papalou O, Kandaraki EA, Papadakis G, Diamanti-Kandarakis E (2019) Endocrine disrupting chemicals: an occult mediator of metabolic disease. Front Endocrinol 10:112

    Google Scholar 

  • Park H, He A, Lodhi IJ (2019) Lipid regulators of thermogenic fat activation. Trends Endocrinol Metab 30(10):710–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parmar RM, Can AS (2022) Physiology, appetite and weight regulation [Online]. StatPearls, Treasure Island. Available: https://www.ncbi.nlm.nih.gov/books/Nbk574539/. Accessed 19 Sept 2023

  • Perry B, Wang Y (2012) Appetite regulation and weight control: the role of gut hormones. Nutr Diabetes 2(1):e26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peyrou M, Cereijo R, Quesada-López T, Campderrós L, Gavaldà-Navarro A, Liñares-Pose L, Kaschina E, Unger T, López M, Giralt M, Villarroya F (2020) The kallikrein-kinin pathway as a mechanism for auto-control of brown adipose tissue activity. Nat Commun 11(1):2132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian S, Tang Y, Tang QQ (2021) Adipose tissue plasticity and the pleiotropic roles of BMP signaling. J Biol Chem 296:100678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabiee F, Lachinani L, Ghaedi S, Nasr-Esfahani MH, Megraw TL, Ghaedi K (2020) New insights into the cellular activities of Fndc5/Irisin and its signaling pathways. Cell Biosci 10:51

    PubMed  PubMed Central  Google Scholar 

  • Rakha A, Mehak F, Shabbir MA, Arslan M, Ranjha MMAN, Ahmed W, Socol CT, Rusu AV, Hassoun A, Aadil RM (2022) Insights into the constellating drivers of satiety impacting dietary patterns and lifestyle. Front Nutr 9:1002619

    PubMed  PubMed Central  Google Scholar 

  • Reggio S, Pellegrinelli V, Clément K, Tordjman J (2013) Fibrosis as a cause or a consequence of white adipose tissue inflammation in obesity. Curr Obes Rep 2:1–9

    Google Scholar 

  • Reilly SM, Saltiel AR (2017) Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol 13(11):633–643

    CAS  PubMed  Google Scholar 

  • Ribeiro E, Ladeira C, Viegas S (2017) EDCs mixtures: a stealthy hazard for human health? Toxics 5(1):5

    PubMed  PubMed Central  Google Scholar 

  • Roger C, Lasbleiz A, Guye M, Dutour A, Gaborit B, Ranjeva J-P (2022) The role of the human hypothalamus in food intake networks: an MRI perspective. Front Nutr 8:760914

    PubMed  PubMed Central  Google Scholar 

  • Rohm TV, Meier DT, Olefsky JM, Donath MY (2022) Inflammation in obesity, diabetes, and related disorders. Immunity 55(1):31–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rolle-Kampczyk U, Gebauer S, Haange SB, Schubert K, Kern M, Moulla Y, Dietrich A, Schön MR, Klöting N, Von Bergen M, Blüher M (2020) Accumulation of distinct persistent organic pollutants is associated with adipose tissue inflammation. Sci Total Environ 748:142458

    CAS  PubMed  Google Scholar 

  • Rönn M, Lind L, Örberg J, Kullberg J, Söderberg S, Larsson A, Johansson L, Ahlström H, Lind PM (2014) Bisphenol A is related to circulating levels of adiponectin, leptin and ghrelin, but not to fat mass or fat distribution in humans. Chemosphere 112:42–48

    PubMed  Google Scholar 

  • Rozman K, Pereira D, Iatropoulos MJ (1987) Effect of a sublethal dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin on interscapular brown adipose tissue of rats. Toxicol Pathol 15(4):425–430

    CAS  PubMed  Google Scholar 

  • Rufino AT, Costa VM, Carvalho F, Fernandes E (2021) Flavonoids as antiobesity agents: a review. Med Res Rev 41(1):556–585

    CAS  PubMed  Google Scholar 

  • Sakers A, De Siqueira MK, Seale P, Villanueva CJ (2022) Adipose-tissue plasticity in health and disease. Cell 185(3):419–446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santhekadur PK, Kumar DP, Seneshaw M, Mirshahi F, Sanyal AJ (2017) The multifaceted role of natriuretic peptides in metabolic syndrome. Biomed Pharmacother 92:826–835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santillana N, Astudillo-Guerrero C, D’espessailles A, Cruz G (2023) White adipose tissue dysfunction: pathophysiology and emergent measurements. Nutrients 15(7):1722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaedlich K, Gebauer S, Hunger L, Beier L-S, Koch HM, Wabitsch M, Fischer B, Ernst J (2018) DEHP deregulates adipokine levels and impairs fatty acid storage in human SGBS-adipocytes. Sci Rep 8(1):3447

    PubMed  PubMed Central  Google Scholar 

  • Scheel AK, Espelage L, Chadt A (2022) Many ways to Rome: exercise, cold exposure and diet-do they all affect BAT activation and WAT browning in the same manner? Int J Mol Sci 23(9):4759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serra D, Mera P, Malandrino MI, Mir JF, Herrero L (2013) Mitochondrial fatty acid oxidation in obesity. Antioxid Redox Signal 19(3):269–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shan T, Liang X, Bi P, Zhang P, Liu W, Kuang S (2013) Distinct populations of adipogenic and myogenic Myf5-lineage progenitors in white adipose tissues. J Lipid Res 54(8):2214–2224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon M, Green B, Willars G, Wilson J, Matthews N, Lamb J, Gillespie A, Connolly L (2017) The endocrine disrupting potential of monosodium glutamate (MSG) on secretion of the glucagon-like peptide-1 (GLP-1) gut hormone and GLP-1 receptor interaction. Toxicol Lett 265:97–105

    CAS  PubMed  Google Scholar 

  • Shapiro GD, Arbuckle TE, Ashley-Martin J, Fraser WD, Fisher M, Bouchard MF, Monnier P, Morisset AS, Ettinger AS, Dodds L (2018) Associations between maternal triclosan concentrations in early pregnancy and gestational diabetes mellitus, impaired glucose tolerance, gestational weight gain and fetal markers of metabolic function. Environ Res 161:554–561

    CAS  PubMed  Google Scholar 

  • Speakman JR (2018) Obesity and thermoregulation. Handb Clin Neurol 156:431–443

    PubMed  Google Scholar 

  • Sun H, Wang N, Nie X, Zhao L, Li Q, Cang Z, Chen C, Lu M, Cheng J, Zhai H, Xia F, Ye L, Lu Y (2017) Lead exposure induces weight gain in adult rats, accompanied by DNA hypermethylation. PLoS One 12(1):e0169958

    PubMed  PubMed Central  Google Scholar 

  • Takeda Y, Harada Y, Yoshikawa T, Dai P (2023) Mitochondrial energy metabolism in the regulation of thermogenic brown fats and human metabolic diseases. Int J Mol Sci 24(2):1352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timper K, Brüning JC (2017) Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech 10(6):679–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tinkov AA, Aschner M, Ke T, Ferrer B, Zhou JC, Chang JS, Santamaría A, Chao JC, Aaseth J, Skalny AV (2021) Adipotropic effects of heavy metals and their potential role in obesity. Fac Rev 10:32

    Google Scholar 

  • Tungland B (2018) Chapter 2 – Short-chain fatty acid production and functional aspects on host metabolism. In: Tungland B (ed) Human microbiota in health and disease. Academic

    Google Scholar 

  • Van Esterik JC, Dollé ME, Lamoree MH, Van Leeuwen SP, Hamers T, Legler J, Van Der Ven LT (2014) Programming of metabolic effects in C57BL/6JxFVB mice by exposure to bisphenol A during gestation and lactation. Toxicology 321:40–52

    PubMed  Google Scholar 

  • Van Esterik JC, Verharen HW, Hodemaekers HM, Gremmer ER, Nagarajah B, Kamstra JH, Dollé ME, Legler J, Van Der Ven LT (2015) Compound- and sex-specific effects on programming of energy and immune homeostasis in adult C57BL/6JxFVB mice after perinatal TCDD and PCB 153. Toxicol Appl Pharmacol 289(2):262–275

    PubMed  Google Scholar 

  • Vishvanath L, Gupta RK (2019) Contribution of adipogenesis to healthy adipose tissue expansion in obesity. J Clin Invest 129(10):4022–4031

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Sun B, Hou M, Pan X, Li X (2013) The environmental obesogen bisphenol A promotes adipogenesis by increasing the amount of 11β-hydroxysteroid dehydrogenase type 1 in the adipose tissue of children. Int J Obes 37(7):999–1005

    CAS  Google Scholar 

  • Wei J, Lin Y, Li Y, Ying C, Chen J, Song L, Zhou Z, Lv Z, Xia W, Chen X, Xu S (2011) Perinatal exposure to bisphenol A at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology 152(8):3049–3061

    CAS  PubMed  Google Scholar 

  • Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vázquez MJ, Morgan D, Csikasz RI, Gallego R, Rodriguez-Cuenca S, Dale M, Virtue S, Villarroya F, Cannon B, Rahmouni K, López M, Vidal-Puig A (2012) BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149(4):871–885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wit M, Trujillo-Viera J, Strohmeyer A, Klingenspor M, Hankir M, Sumara G (2022) When fat meets the gut-focus on intestinal lipid handling in metabolic health and disease. EMBO Mol Med 14(5):e14742

    CAS  PubMed  PubMed Central  Google Scholar 

  • World Obesity Federation (2023) World obesity atlas 2023. Available: https://data.worldobesity.org/publications/?cat=19. Accessed 16 Sept 2023

  • Yamasaki M, Hasegawa S, Imai M, Fukui T, Takahashi N (2021) Browning effect of brominated flame retardant, TBBP-A, on undifferentiated adipocytes. BPB Rep 4(1):41–46

    Google Scholar 

  • Yan D, Jiao Y, Yan H, Liu T, Yan H, Yuan J (2022) Endocrine-disrupting chemicals and the risk of gestational diabetes mellitus: a systematic review and meta-analysis. Environ Health 21(1):53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang A, Mottillo EP (2020) Adipocyte lipolysis: from molecular mechanisms of regulation to disease and therapeutics. Biochem J 477(5):985–1008

    CAS  PubMed  Google Scholar 

  • Yang C, Lee HK, Kong APS, Lim LL, Cai Z, Chung ACK (2018a) Early-life exposure to endocrine disrupting chemicals associates with childhood obesity. Ann Pediatr Endocrinol Metab 23(4):182–195

    PubMed  PubMed Central  Google Scholar 

  • Yang C, Wong CM, Wei J, Chung ACK, Cai Z (2018b) The brominated flame retardant BDE 47 upregulates purine metabolism and mitochondrial respiration to promote adipocyte differentiation. Sci Total Environ 644:1312–1322

    CAS  PubMed  Google Scholar 

  • Yang XD, Ge XC, Jiang SY, Yang YY (2022) Potential lipolytic regulators derived from natural products as effective approaches to treat obesity. Front Endocrinol 13:1000739

    Google Scholar 

  • Yousefvand S, Hamidi F (2021) The role of ventromedial hypothalamus receptors in the central regulation of food intake. Int J Pept Res Ther 27:689–702

    CAS  Google Scholar 

  • Zhang Y, Lin Y, Li X, Zhang L, Pan W, Zhu H, Xi Z, Yang D (2017) Silica dioxide nanoparticles combined with cold exposure induce stronger systemic inflammatory response. Environ Sci Pollut Res 24(1):291–298

    CAS  Google Scholar 

  • Zhang Y, Zhang L, Wu S, Zhang G, Wei X, Li X, Yang D (2023) Silicon dioxide nanoparticles inhibit the effects of cold exposure on metabolism and inflammatory responses in brown adipocytes. Frigid Zone Med 3(2):97–104

    Google Scholar 

  • Zhao C, Tang Z, Xie P, Lin K, Chung ACK, Cai Z (2019) Immunotoxic potential of bisphenol F mediated through lipid signaling pathways on macrophages. Environ Sci Technol 53(19):11420–11428

    CAS  PubMed  Google Scholar 

  • Ziqubu K, Dludla PV, Mthembu SXH, Nkambule BB, Mabhida SE, Jack BU, Nyambuya TM, Mazibuko-Mbeje SE (2023) An insight into brown/beige adipose tissue whitening, a metabolic complication of obesity with the multifactorial origin. Front Endocrinol 14:1114767

    Google Scholar 

Download references

Acknowledgements

This work received financial support and help from FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior (LA/P/0008/2020 DOI: 10.54499/LA/P/0008/2020, UIDP/50006/2020 DOI: 10.54499/UIDP/50006/2020 and UIDB/50006/2020 DOI: 10.54499/UIDB/50006/2020), through national funds. This work was also supported by national funds through the project with reference EXPL/MED-QUI/0815/2021. C.P. acknowledges financial support from the project EXPL/MED-QUI/0815/2021. Marisa Freitas acknowledges her contract under the Scientific Employment Stimulus—Individual Call (CEEC Individual) 2020.04126.CEECIND. Marisa Freitas also thanks LAQV-REQUIMTE for her contract under the reference LA/P/0008/2020 DOI: 10.54499/LA/P/0008/2020. Sílvia Rocha thanks FCT/MCTES and ESF (European Social Fund) through NORTE 2020 (Programa Operacional Regional do Norte) for her PhD grant ref. 2021.07176.BD DOI: 10.54499/2021.07176.BD. José Miguel P. Ferreira de Oliveira (SFRH/BPD/74868/2010) thanks FCT for funding through program DL 57/2016-Norma transitória.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduarda Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Proença, C., Freitas, M., Rocha, S., Ferreira de Oliveira, J.M.P., Carvalho, F., Fernandes, E. (2024). Unravelling the Influence of Endocrine-Disrupting Chemicals on Obesity Pathophysiology Pathways. In: ENGIN, A.B., ENGIN, A. (eds) Obesity and Lipotoxicity. Advances in Experimental Medicine and Biology, vol 1460. Springer, Cham. https://doi.org/10.1007/978-3-031-63657-8_30

Download citation

Publish with us

Policies and ethics