Abstract
Boolean Satisfiability (SAT) epitomizes NP-completeness, and so what is arguably the best known class of intractable problems. NP-complete decision problems are pervasive in all areas of computing, with literally thousands of well-known examples. Nevertheless, SAT solvers routinely challenge the problem’s intractability by solving propositional formulas with millions of variables, many representing the translation from some other NP-complete or NP-hard problem. The practical effectiveness of SAT solvers has motivated their use as oracles for NP, enabling new algorithms that solve an ever-increasing range of hard computational problems. This paper provides a brief overview of this ongoing effort, summarizing some of the recent past and present main successes, and highlighting directions for future research.
This work was supported by FCT grant ABSOLV (028986/02/SAICT/2017), and LASIGE Research Unit, ref. UID/CEC/00408/2013.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The paper aims to highlight the many uses of SAT oracles, and so the list of references does not aim to be exhaustive. Additional references can be found in the references cited.
References
AbÃo, I., Nieuwenhuis, R., Oliveras, A., RodrÃguez-Carbonell, E., Mayer-Eichberger, V.: A new look at BDDs for pseudo-boolean constraints. J. Artif. Intell. Res. 45, 443–480 (2012)
Achá, R.J.A., Nieuwenhuis, R., Oliveras, A., RodrÃguez-Carbonell, E.: Practical algorithms for unsatisfiability proof and core generation in SAT solvers. AI Commun. 23(2–3), 145–157 (2010)
Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., Rudin, C.: Learning certifiably optimal rule lists. In: KDD, pp. 35–44 (2017)
Arif, M.F., MencÃa, C., Marques-Silva, J.: Efficient MUS enumeration of horn formulae with applications to axiom pinpointing. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 324–342. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_24
AsÃn, R., Nieuwenhuis, R., Oliveras, A., RodrÃguez-Carbonell, E.: Cardinality networks: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2007)
Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017)
Bacchus, F., Davies, J., Tsimpoukelli, M., Katsirelos, G.: Relaxation search: a simple way of managing optional clauses. In: AAAI, pp. 835–841 (2014)
Bacchus, F., Katsirelos, G.: Using minimal correction sets to more efficiently compute minimal unsatisfiable sets. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 70–86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3_5
Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of Pseudo-Boolean constraints into CNF. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 181–194. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_19
Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Commun. 25(2), 97–116 (2012)
Beyersdorff, O., Chew, L., Schmidt, R.A., Suda, M.: Lifting QBF resolution calculi to DQBF. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 490–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_30
Beyersdorff, O., Pich, J.: Understanding Gentzen and Frege systems for QBF. In: LICS, pp. 146–155 (2016)
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)
Buss, S., Bonet, M.L., Ignatiev, A., Marques-Silva, J., Morgado, A.: MaxSAT resolution with the dual rail encoding. In: AAAI, February 2018
Cadoli, M., Schaerf, A.: Compiling problem specifications into SAT. Artif. Intell. 162(1–2), 89–120 (2005)
Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approximate counting for probabilistic inference: from linear to logarithmic SAT calls. In: IJCAI, pp. 3569–3576 (2016)
Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_23
Cook, S.A.: The complexity of theorem-proving procedures. In: STOC, pp. 151–158 (1971)
Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3
Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7_19
de Haan, R., Szeider, S.: The parameterized complexity of reasoning problems beyond NP. In: KR (2014)
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37. MiniSat 2.2. https://github.com/niklasso/minisat.git
Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. JSAT 2(1–4), 1–26 (2006)
Fomin, F.V., Kaski, P.: Exact exponential algorithms. Commun. ACM 56(3), 80–88 (2013)
Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_25
Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: LICS, pp. 55–64 (2003)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Morgan & Claypool Publishers, San Rafael (2012)
Grégoire, É., Lagniez, J., Mazure, B.: An experimentally efficient method for (MSS, CoMSS) partitioning. In: AAAI, pp. 2666–2673 (2014)
Helmert, M.: The fast downward planning system. J. Artif. Intell. Res. 26, 191–246 (2006)
Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms for maximum satisfiability. In: AAAI (2011)
Heras, F., Morgado, A., Planes, J., Silva, J.P.M.: Iterative SAT solving for minimum satisfiability. In: ICTAI, pp. 922–927 (2012)
Heule, M.J.H., Kullmann, O.: The science of brute force. Commun. ACM 60(8), 70–79 (2017)
Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving very hard problems: cube-and-conquer, a hybrid SAT solving method. In: IJCAI, pp. 4864–4868 (2017)
Ignatiev, A., Morgado, A., Marques-Silva, J.: Propositional abduction with implicit hitting sets. In: ECAI, pp. 1327–1335 (2016)
Ignatiev, A., Morgado, A., Marques-Silva, J.: On tackling the limits of resolution in SAT solving. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 164–183. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_11
Ignatiev, A., Pereira, F., Narodytska, N., Marques-Silva, J.: A SAT-based approach to learn explainable decision sets. In: IJCAR (2018)
Ignatiev, A., Previti, A., Marques-Silva, J.: SAT-based formula simplification. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 287–298. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_21
Janhunen, T., Niemelä, I.: Compact translations of non-disjunctive answer set programs to propositional clauses. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS (LNAI), vol. 6565, pp. 111–130. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20832-4_8
Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterexample guided refinement. Artif. Intell. 234, 1–25 (2016)
Janota, M., Lynce, I., Marques-Silva, J.: Algorithms for computing backbones of propositional formulae. AI Commun. 28(2), 161–177 (2015)
Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 230–244. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21581-0_19
Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci. 577, 25–42 (2015)
Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: IJCAI, pp. 325–331 (2015)
Janota, M., Marques-Silva, J.: On the query complexity of selecting minimal sets for monotone predicates. Artif. Intell. 233, 73–83 (2016)
Kautz, H.A., Selman, B.: Unifying SAT-based and graph-based planning. In: IJCAI, pp. 318–325 (1999)
Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics: Essays in Memory of Harald Ganzinger. LNCS, vol. 7797, pp. 239–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37651-1_10
Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-50497-0
Kullmann, O., Marques-Silva, J.: Computing maximal autarkies with few and simple oracle queries. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 138–155. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_11
Lagniez, J., Berre, D.L., de Lima, T., Montmirail, V.: A recursive shortcut for CEGAR: application to the modal logic K satisfiability problem. In: IJCAI, pp. 674–680 (2017)
Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: a joint framework for description and prediction. In: KDD, pp. 1675–1684 (2016)
Li, O., Liu, H., Chen, C., Rudin, C.: Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions. In: AAAI, February 2018
Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Exponential recency weighted average branching heuristic for SAT solvers. In: AAAI, pp. 3434–3440 (2016)
Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enumeration. Constraints 21(2), 223–250 (2016)
Luo, M., Li, C., Xiao, F., Manyà , F., Lü, Z.: An effective learnt clause minimization approach for CDCL SAT solvers. In: IJCAI, pp. 703–711 (2017)
Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing minimal correction subsets. In: IJCAI, pp. 615–622 (2013)
Marques-Silva, J., Janota, M., Belov, A.: Minimal sets over monotone predicates in Boolean formulae. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 592–607. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_39
Marques-Silva, J., Janota, M., Ignatiev, A., Morgado, A.: Efficient model based diagnosis with maximum satisfiability. In: IJCAI, pp. 1966–1972 (2015)
Marques-Silva, J., Janota, M., MencÃa, C.: Minimal sets on propositional formulae. problems and reductions. Artif. Intell. 252, 22–50 (2017)
Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability. CoRR, abs/0712.1097 (2007)
Marques-Silva, J., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)
Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–548. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_39
McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_1
MencÃa, C., Ignatiev, A., Previti, A., Marques-Silva, J.: MCS extraction with sublinear oracle queries. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 342–360. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_21
MencÃa, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In: IJCAI, pp. 1973–1979 (2015)
Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardinality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_41
Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: DAC, pp. 530–535 (2001)
Nadel, A., Ryvchin, V., Strichman, O.: Efficient MUS extraction with resolution. In: FMCAD, pp. 197–200 (2013)
Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: AAAI, pp. 2717–2723 (2014)
Narodytska, N., Ignatiev, A., Pereira, F., Marques-Silva, J.: Learning optimal decision trees with SAT. In: IJCAI (2018)
Niemetz, A., Preiner, M., Biere, A.: Propagation based local search for bit-precise reasoning. Form. Methods Syst. Des. 51(3), 608–636 (2017)
Nöhrer, A., Biere, A., Egyed, A.: Managing SAT inconsistencies with HUMUS. In: VaMoS, pp. 83–91 (2012)
Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation. Constraints 14(3), 357–391 (2009)
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1993)
Piskac, R., de Moura, L.M., Bjørner, N.: Deciding effectively propositional logic using DPLL and substitution sets. J. Autom. Reason. 44(4), 401–424 (2010)
Previti, A., Ignatiev, A., Morgado, A., Marques-Silva, J.: Prime compilation of non-clausal formulae. In: IJCAI, pp. 1980–1988 (2015)
Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symb. Log. 62(3), 981–998 (1997)
Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)
Sebastiani, R.: Lazy satisfiability modulo theories. JSAT 3(3–4), 141–224 (2007)
Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_73
Suda, M.: Property directed reachability for automated planning. J. Artif. Intell. Res. 50, 265–319 (2014)
Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: TACAS, pp. 632–647 (2007)
Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_46
Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45349-0_32
Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive normal form. Inf. Process. Lett. 68(2), 63–69 (1998)
Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization — Eureka, You Shrink!. LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36478-1_17
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Marques-Silva, J. (2018). Computing with SAT Oracles: Past, Present and Future. In: Manea, F., Miller, R., Nowotka, D. (eds) Sailing Routes in the World of Computation. CiE 2018. Lecture Notes in Computer Science(), vol 10936. Springer, Cham. https://doi.org/10.1007/978-3-319-94418-0_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-94418-0_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94417-3
Online ISBN: 978-3-319-94418-0
eBook Packages: Computer ScienceComputer Science (R0)