Skip to main content

Numerical and Experimental Modelling of WECs

  • Chapter
Ocean Wave Energy

Part of the book series: Green Energy and Technology(Virtual Series) ((GREEN))

  • 10k Accesses

Abstract

The design of a wave energy converter relies heavily on results from numerical simulations and experiments with scale models. Such results allow not only fun-damental design changes but also the optimisation of selected configurations. For ongoing development, and particularly at an early stage, numerical models give the flexibility of assessing a large number of versions at a relatively low cost. Physical models are then tested in wave tanks to validate the numerical simula-tions and to investigate phenomena which are not evidenced by the computational packages. This chapter provides an overview on the numerical techniques that have been used to model the hydrodynamics of wave energy converters (WECs), details on wavemaker and wave tank design, guidelines on experimental tech-niques and finally a case study related to one of the most studied concepts which reached the full-scale prototype stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alves M (2002) Incident Wave Identification. MARETEC/AWS Internal Report 2/2002. Lisbon, Portugal

    Google Scholar 

  • Bai K, Yeung R (1976) Numerical Solutions of Free-Surface Flow Problems. Proc 11th Sym Naval Hydrodyn. London, UK, pp 609–641

    Google Scholar 

  • Baltazar J, Falcao de Campos JA, Bosschers J (2005) A Study on the Modelling of Marine Propeller Tip Flows using BEM. Congreso de Métodos Numéricos en Ingeniería. Granada, Spain

    Google Scholar 

  • Biesel F, Suquet F (1951) Les apparails generateurs de houle en laboratoire. La Houille Blanche, 6, 2, 4, and 5. Laboratory Wave Generating Apparatus English version Project report 39. St Anthony Falls Hydraulic Laboratory, Minnesota University

    Google Scholar 

  • Boccotti P, Filianoti P, Fiamma V, Arena F (2007) Caisson breakwaters embodying an OWC with a small opening – Part II: a small scale field experiment. Ocean Eng 34(5–6):820–841

    Article  Google Scholar 

  • Brito-Melo A, Sarmento A, Clément A, Delhommeau G (1998) Hydrodynamic Analysis of Geometrical Design Parameters of Oscillating Water Columns. Proc 3rd Eur Wave Energy Conf, Vol. 1. Patras, Greece, pp 23–30

    Google Scholar 

  • Brito-Melo A, Hofmann T, Sarmento A, Clément A, Delhommeau G (2000a) Numerical Modelling of OWC-shoreline Devices Including the Effect of the Surronding Coastline and Non-Flat Bottom, Proc 10th Int Offshore Polar Eng Conf, Vol. 1. Seattle, USA, pp 743–748

    Google Scholar 

  • Brito-Melo A, Sarmento A (2000b) Numerical Study of the Performance of a OWC Wave Power Plant in a Semi-Infinite Breakwater. Proc 4th Eur Wave Energy Conf. Aalborg, Denmark, pp 283–289

    Google Scholar 

  • Cruz J, Payne G (2006) Preliminary numerical studies on a modified version of the Edinburgh duck using WAMIT. Proc World Maritime Technol Conf. MAREC stream, Paper 027. London, United Kingdom

    Google Scholar 

  • Cruz J, Salter S (2006) Numerical and Experimental Modelling of a Modified Version of the Edinburgh Duck Wave Energy Device. J Eng Maritme Env – Proc IMechE Part M 220(3):129–148

    Article  Google Scholar 

  • Delauré Y, Lewis A (2000a) An Assessment of 3D Boundary Element Methods for Response Prediction of Generic OWCs. Proc 10th Int Offshore Polar Eng Conf, Vol. 1. Seattle, USA, pp 387–393

    Google Scholar 

  • Delauré Y, Lewis A (2000b) A comparison of OWC response predicton by a Boundary Element Method with scaled model results. Proc 4th Eur Wave Energy Conf. Aalborg, Denmark, pp 275–282

    Google Scholar 

  • Delauré Y, Lewis A (2001) A 3D Parametric Study of a Rectangular Bottom-Mounted OWC Power Plant. Proc 11th Int Offshore Polar Eng Conf, Vol. 1. Stavanger, Norway, pp 584–554

    Google Scholar 

  • Delauré Y, Lewis A (2003) 3D hydrodynamic modelling of fixed oscillating water column by a boundary element methods. Ocean Eng 30(3):309–330

    Article  Google Scholar 

  • Eatock TR, Jeffreys E (1985) Variability of Hydrodynamic Load Predictions for a Tension Leg Platform. Ocean Eng 13(5):449–490

    Google Scholar 

  • Eça L, Hoekstra M (2000) An Evaluation of Verification Procedures for Computational fluid Dynamics. IST-MARIN Report D72-7

    Google Scholar 

  • Evans DV (1976) A theory for wave-power absorption by oscillating bodies. J Fluid Mech 77(1):1–25

    Article  MATH  Google Scholar 

  • Evans DV, Jeffrey DC, Salter SH, Taylor JR (1979) Submerged cylinder wave energy device: theory and experiment. Appl Ocean Re 1(1):3–12

    Article  Google Scholar 

  • Evans DV (1981) Power from Water Waves. Annu Rev Fluid Mech 13:157–187

    Article  Google Scholar 

  • Evans D, Linton CM (1993) Hydrodynamics of wave-energy devices. Annex Report B1: Device Fundamentals/Hydrodynamics, Contract JOU2-0003-DK. Commission of the European Communities

    Google Scholar 

  • Falnes J (2002) Ocean Waves and Oscillating Systems. Cambridge Univ Press

    Google Scholar 

  • Gilbert G, Thompson DM, Brewer AJ (1971) Design curves for regular and random wave generators. J Hydraulic Res 9(2):163–196

    Article  Google Scholar 

  • Haskind M (1957) The exciting forces and wetting of ships in waves. Izv Akad Nauk SSSR. Otd Tekh Nauk 7:65–79

    Google Scholar 

  • Havelock T (1942) The damping of the heaving and pitching motion of a ship. Philos Mag 33(7):666–673

    MATH  MathSciNet  Google Scholar 

  • Hess J (1990) Panel methods in computational fluid dynamics. Annual Review of Fluid Mechanics, Vol 22, pp 255–274

    Article  Google Scholar 

  • Hess J, Smith A (1964) Calculation of nonlifting potential flow about arbitrary three-dimensional bodies. Journal of Ship Research, Vol. 8, pp 22–44

    Google Scholar 

  • Hughes SA (1993) Physical Models and Laboratory Techniques in Coastal Engineering. World Scientific

    Google Scholar 

  • Jeffrey DC, Keller GJ, Mollison D, Richmond DJ, Salter SH, Taylor JM, Young IA (1978) Study of mechanisms for extracting power from sea waves. Fourth Year Report of the Edinburgh Wave Power Project. The University of Edinburgh

    Google Scholar 

  • Katory M (1976) On the motion analysis of large asymmetric bodies among sea waves: an application to a wave power generator. Naval Architecture, pp 158–159

    Google Scholar 

  • Lamb H (1932) Hydrodynamics, 6th edn. Cambridge University Press

    Google Scholar 

  • Le Méhauté B (1976) An Introduction to Hydrodynamics & Water Waves. Springer-Verlag

    Google Scholar 

  • Lee C-H, Maniar H, Newman JN, Zhu X (1996a) Computations of Wave Loads Using a B-Spline Panel Method. Proc 21st Sym Naval Hydrodynam. Trondheim, Norway, pp 75–92

    Google Scholar 

  • Lee C-H, Newman JN, Nielsen F (1996b) Wave Interactions with Oscillating Water Column. Proc 6th Int Offshore Polar Eng Conf, Vol. 1. Los Angeles, USA, pp 82–90

    Google Scholar 

  • Lee C-H, Farina L, Newman J (1998) A Geometry-Independent Higher-Order Panel Method and its Application to Wave-Body Interactions. Proc 3rd Eng Math Appl Conf. Adelaide, Australia, pp 303–306

    Google Scholar 

  • Lin C-P (1999) Experimental studies of the hydrodynamic characteristics of a sloped wave energy device. PhD Thesis, The University of Edinburgh

    Google Scholar 

  • Linton CM (1991) Radiation and diffraction of water waves by a submerged sphere in finite depth. Ocean Eng 18(1/2):61–74

    Article  Google Scholar 

  • Maniar H (1995) A three-dimensional higher order panel method based on B-splines. PhD Thesis, Massachusetts Institute of Technology

    Google Scholar 

  • Martins E, Ramos FS, Carrilho L, Justino P, Gato L, Trigo L, Neumann F (2005) CEODOURO: Overall Design of an OWC in the new Oporto Breakwater. Proc 6th Eur Wave Energy Conf. Glasgow, UK, pp 273–280

    Google Scholar 

  • McCabe AP (2004) An Appraisal of a Range of Fluid Modelling Software. Supergen Marine Workpackage 2 (T2.3.4)

    Google Scholar 

  • Mei CC (1976) Power Extraction from Water Waves. J Ship Res 20:63–66

    Google Scholar 

  • Mei CC (1989) The Applied Dynamics of Ocean Surface Waves. Adv Ser Ocean Eng, Vol. 1. World Scientific [revised edition in 2005]

    Google Scholar 

  • Mynett AE, Serman DD, Mei CC (1979) Characteristics of Salter’s cam for extractgin energy from ocean waves. Appl Ocean Res 1(1):13–20

    Article  Google Scholar 

  • Nebel P (1992) Optimal Control of a Duck. Report of the Edinburgh Wave Power Project. Edinburgh, UK

    Google Scholar 

  • Newman JN (1976) The interaction of stationary vessels with regular waves. Proc 11th Sym Naval Hydrodynam. London, UK, pp 491–501

    Google Scholar 

  • Newman JN (1977) Marine Hydrodynamics. MIT Press

    Google Scholar 

  • Newman JN (1985) Algorithms for the free-surface Green’s function. J Eng Math 19:57–67

    Article  MATH  Google Scholar 

  • Newman JN (1992) Panel methods in marine hydrodynamics. Proc 11th Australasian Fluid Mech Conf, Keynote Paper K-2. Hobart, Australia

    Google Scholar 

  • Newman JN, Lee CH (1992) Sensitivity of Wave Loads to the Discretization of Bodies. Proc 6th Behav Offshore Struct (BOSS) Int Conf, Vol. 1. London, UK, pp 50–63

    Google Scholar 

  • Newman JN, Lee CH (2002) Boundary-Element Methods in Offshore Structure Analysis. J Offshore Mech Artic Engin 124.81–89

    Article  Google Scholar 

  • Ogilvir TF (1963) First- and second-order forces on a submerged cylinder submerged under a free surface. J Fluid Mech 16:451–472

    Article  MathSciNet  Google Scholar 

  • Ouslett, Datta (1986) A survey of wave absorbers. J Hydraulic Res 24:265–279

    Article  Google Scholar 

  • Payne G (2002) Preliminary numerical simulations of the Sloped IPS Buoy. Proc MAREC Conf. Univ Newcastle upon Tyne, UK

    Google Scholar 

  • Payne GS (2006) Numerical modelling of a sloped wave energy device. PhD Thesis, The University of Edinburgh

    Google Scholar 

  • Pinkster JA (1997) Computations for Archimedes Wave Swing. Report No. 1122-O. Delft University Technology, Delft, The Netherlands

    Google Scholar 

  • Pizer D (1992) Numerical Predictions of the Performance of a Solo Duck. Report of the Edinburgh Wave Power Project, Edinburgh, UK

    Google Scholar 

  • Pizer D (1993) The Numerical Prediction of the Performance of a Solo Duck. Proc Eur Wave Energy Sym. Edinburgh, UK, pp 129–137

    Google Scholar 

  • Pizer D (1994) Numerical Models. Report of the Edinburgh Wave Power Project, Edinburgh, UK

    Google Scholar 

  • Pizer D, Retzler C, Henderson R, Cowieson F, Shaw M, Dickens B, Hart R (2005) PELAMIS WEC – Recent Advances in the Numerical and Experimental Modelling Programme. Proc 6th Eur Wave Energy Conf. Glasgow, UK, pp 373–378

    Google Scholar 

  • Prado MGS, Neumann F, Damen MEC, Gardner F (2005) AWS Results of Pilot Plant Testing 2004. Proc 6th Eur Wave Energy Conf. Glasgow, UK, pp 401–408

    Google Scholar 

  • Retzler C, Pizer D, Henderson R, Ahlqvist J, Cowieson F, Shaw M (2003) PELAMIS: Advances in the Numerical and Experimental Modelling Programme. Proc 5th Eur Wave Energy Conf. Cork, Ireland, pp 59–66

    Google Scholar 

  • Roache PJ (1997) Quantification of Uncertainty in Computational Fluid Dynamics. Annu Rev Fluid Mech 29:123–160

    Article  MathSciNet  Google Scholar 

  • Roache PJ (1998) Verification and Validation of Computational Science and Engineering. Hermosa Publishers

    Google Scholar 

  • Roache PJ (2003) Error Bars for CFD. 41th Aerospace Sci Meet. Reno, USA

    Google Scholar 

  • Romate JE (1988) Local Error analysis in 3-D Panel Methods. J Eng Math 22.123–142

    Article  MATH  MathSciNet  Google Scholar 

  • Romate JE (1989) The Numerical Simulation of Nonlinear Gravity Waves in Three Dimensions using a Higher Order Panel Method. PhD Thesis, Universiteit Twente

    Google Scholar 

  • Salter SH (1974) Wave Power. Nature 249:720–724

    Article  Google Scholar 

  • Salter SH (1978) Wide Tank User Guide. Fourth Year Rep, Vol 3(3). Edinburgh Wave Power Project

    Google Scholar 

  • Salter SH (1981) Absorbing wave-maker and wide tanks. Proc Directional Wave Spectra Applicat. Am Soc Civil Eng, pp 185–202

    Google Scholar 

  • Salter SH (2001) Proposals for a combined wave and current tank with independent 360° capability. Proc MAREC 2001. IMarEST, Newcastle, UK, pp 75–86

    Google Scholar 

  • Sarpkaya T, Isaacson I (1981) Mechanics of Wave Forces on Offshore Structures. Von Nostrand Reinhold Company

    Google Scholar 

  • Skyner D (1987) Solo Duck Linear Analysis. Report of the Edinburgh Wave Power Project. Edinburgh, UK

    Google Scholar 

  • Sykes R, Lewis A, Thomas G (2007) A Physical and Numerical Study of a Fixed Cylindrical OWC of Finite Wall Thickness. Proc 7th Eur Wave Tidal Energy Conf. Porto, Portugal

    Google Scholar 

  • Standing MG (1980) Use of Potential Flow theory in Evaluating Wave Forces on Offshore Structures. Power from Sea Waves. In: Count B (ed) Proc Conf Inst Math Appl. Academic Press, London, pp 175–212

    Google Scholar 

  • Sumer BM, Fredsûe J (1997) Hydrodynamics around Cylindrical Structures. Adv Ser Ocean Eng 12. World Scientific

    Google Scholar 

  • Taylor J, Rea M, Rogers DJ (2003) The Edinburgh Curved Tank. Proc 5th Eur Wave Energy Conf. Cork, Ireland, pp 307–314

    Google Scholar 

  • Van Daalen E (1993) Numerical and Theoretical Studies of Water Waves and Floating Bodies. PhD Thesis, University of Twente, The Netherlands

    Google Scholar 

  • Vugts JH (1968) The Hydrodynamic Coefficients for Swaying, Heaving and Rolling Cylinders in a Free Surface, Report No. 112 S. Netherlands Ship Research Centre TNO

    Google Scholar 

  • Yeung RW (1982) Numerical methods in free-surface flows. Annu Rev Fluid Mech 14:395–442

    Article  MathSciNet  Google Scholar 

  • Yemm R, Pizer D, Retzler C (2000) The WPT-375 – a near-shore wave energy converter submitted to Scottish Renewables Obligation 3. Proc 3rd Eur Wave Energy Conf, Vol. 2. Patras, Greece, pp 243–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cruz, J., Rea, M., Sarmento, A., Thomas, G., Henderson, R. (2008). Numerical and Experimental Modelling of WECs. In: Cruz, J. (eds) Ocean Wave Energy. Green Energy and Technology(Virtual Series). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74895-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74895-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74894-6

  • Online ISBN: 978-3-540-74895-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics