Abstract
Causal inference can be used to construct models that explain the performance of heuristic algorithms for NP-hard problems. In this paper, we show the application of causal inference to the algorithmic optimization process through an experimental analysis to assess the impact of the parameters that control the behavior of a heuristic algorithm. As a case study we present an analysis of the main parameters of one state of the art procedure for the Bin Packing Problem (BPP). The studies confirm the importance of the application of causal reasoning as a guide for improving the performance of the algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. MIT Press (2001)
Lemeire, J.: Learning Causal Models of Multivariate Systems and the Value of it for the Performance Modeling of Computer Programs. PhD thesis. Vrije Universiteit Brussel (2007)
Pérez, V.: Modelado Causal del Desempeño de Algoritmos Metaheurísticos en Problemas de Distribución de Objetos. Tesis de maestría, Instituto Tecnológico de Cd. Madero, Tamaulipas, México (2007)
Pérez, J., Cruz, L., Pazos, R., Landero, V., Reyes, G., Zavala, C., Fraire, H., Pérez, V.: A Causal Approach for Explaining Why a Heuristic Algorithm Outperforms Another in Solving an Instance Set of the Bin Packing Problem. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 591–598. Springer, Heidelberg (2008)
Quiroz, M.: Caracterización de Factores de Desempeño de Algoritmos de Solución de BPP. Tesis de maestría, Instituto Tecnológico de Cd. Madero, Tamaulipas, México (2009)
Cruz, L.: Caracterización de Algoritmos Heurísticos Aplicados al Diseño de Bases de Datos Distribuidas. PhD Tesis, Centro Nacional de Investigación y Desarrollo Tecnológico, Cuernavaca, Morelos, México (2004)
Álvarez, V.: Modelo para representar la Complejidad del problema y el desempeño de algoritmos. Tesis de maestría, Instituto Tecnológico de Cd. Madero, Tamaulipas, México (2006)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company (1979); A classic introduction to the field
Basse, S.: Computer Algorithms, Introduction to Design and Analysis. Editorial Addison-Wesley Publishing Company (1998)
Cruz Reyes, L., Nieto-Yáñez, D.M., Rangel-Valdez, N., Herrera Ortiz, J.A., González, B.J., Castilla Valdez, G., Delgado-Orta, J.F.: DiPro: An Algorithm for the Packing in Product Transportation Problems with Multiple Loading and Routing Variants. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS (LNAI), vol. 4827, pp. 1078–1088. Springer, Heidelberg (2007)
Loh, K., Golden, B., Wasil, E.: Solving the one-dimensional bin packing problem with a weight annealing heuristic. Computers & Operations Research 35, 2283–2291 (2008)
The TETRAD Project: Causal Models and Statistical Data. TETRAD Homepage: http://www.phil.cmu.edu/projects/tetrad/
Eiben, A., Smit, S.: Parameter Tuning for Configuring and Analyzing Evolutionary Algorithms. Swarm and Evolutionary Computation 1(1), 19–31 (2011)
Nadkarni, S., Shenoy, P.: A bayesian network approach to making inferences in causal maps. European Journal of Operational Research 128, 479–498 (2001)
Vila, M., Sánchez, D., Escobar, L.: Relaciones Causales en Reglas de Asociación. In: XII Congreso Español sobre Tecnologías y Lógica Fuzzy, ESTYLF’2004 (2004)
Pearl, J.: Causal inference in statistics: An overview. Statistics Surveys 3, 96–146 (2009)
Carnegie Mellon University: Causal and Statistical Reasoning. Open Learning Initiative (2011), http://oli.web.cmu.edu/openlearning/
Kalisch, M., Bühlmann, P.: Estimating High-Dimensional Directed Acyclic Graphs with the PC-Algorithm. Journal of Machine Learning Research 8, 613–636 (2007)
Johnson, D.S.: Fast algorithms for bin packing. Journal of Computer and System Sciences 8(3), 272–314 (1974)
Beasley, J.E.: OR-library: Distributing test problems by electronic mail. Journal of the Operational Research Society 41(11), 1069–1072 (1990), http://people.brunel.ac.uk/~mastjjb/jeb/orlib/binpackinfo.html
Klein, R., Scholl, A.: Bin Packing benchmark data sets, http://www.wiwi.uni-jena.de/Entscheidung/binpp/
Euro Especial Interest Group on Cutting and Packing. One Dimensional Cutting and Packing Data Sets, http://paginas.fe.up.pt/~esicup/tiki-list_file_gallery.php?galleryId=1
Cutting and Packing at Dresden University. Benchmark data sets., http://www.math.tu-dresden.de/~capad/cpd-ti.html#pmp
Fleszar, K., Charalambous, C.: Average-weight-controlled bin-oriented heuristics for the one-dimensional bin-packing problem. European Journal of Operational Research 210(2), 176–184 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Quiroz Castellanos, M. et al. (2011). Improving the Performance of Heuristic Algorithms Based on Causal Inference. In: Batyrshin, I., Sidorov, G. (eds) Advances in Artificial Intelligence. MICAI 2011. Lecture Notes in Computer Science(), vol 7094. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25324-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-25324-9_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25323-2
Online ISBN: 978-3-642-25324-9
eBook Packages: Computer ScienceComputer Science (R0)