Skip to main content

Convergence of the Cotangent Formula: An Overview

  • Chapter
Discrete Differential Geometry

Part of the book series: Oberwolfach Seminars ((OWS,volume 38))

Abstract

The cotangent formula constitutes an intrinsic discretization of the Laplace-Beltrami operator on polyhedral surfaces in a finite-element sense. This note gives an overview of approximation and convergence properties of discrete Laplacians and mean curvature vectors for polyhedral surfaces located in the vicinity of a smooth surface in euclidean 3-space. In particular, we show that mean curvature vectors converge in the sense of distributions, but fail to converge in L 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.D. Aleksandrov and V.A. Zalgaller, Intrinsic geometry of surfaces, Translation of Mathematical Monographs, vol. 15, AMS, 1967.

    Google Scholar 

  2. Alexander I. Bobenko, Tim Hoffmann, and Boris A. Springborn, Minimal surfaces from circle patterns: geometry from combinatorics, Annals of Mathematics 164 (2006), no. 1, 231–264.

    Article  MATH  MathSciNet  Google Scholar 

  3. Alexander I. Bobenko and Boris A. Springborn, A discrete Laplace-Beltrami operator for simplicial surfaces, (2005), arXiv:math.DG/0503219, to appear in Discrete Comput. Geom.

    Google Scholar 

  4. Jeff Cheeger, Differentiability of Lipschitz functions on metric spaces, Geom. Funct. Anal. (GAFA) 9 (1999), 428–517.

    Article  MATH  MathSciNet  Google Scholar 

  5. Jeff Cheeger, Werner Müller, and Robert Schrader, Curvature of piecewise fl at metrics, Comm. Math. Phys. 92 (1984), 405–454.

    Article  MATH  MathSciNet  Google Scholar 

  6. David Cohen-Steiner and Jean-Marie Morvan, Restricted Delaunay triangulations and normal cycle, Sympos. Comput. Geom. (2003), 312–321.

    Google Scholar 

  7. _____, Second fundamental measure of geometric sets and local approximation of curvatures, J. Differential Geom. 73 (2006), no. 3, 363–394.

    MathSciNet  Google Scholar 

  8. Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr, Implicit fairing of irregular meshes using diffusion and curvature flow, Proceedings of ACM SIGGRAPH, 1999, pp. 317–324.

    Google Scholar 

  9. R.J. Duffin, Distributed and Lumped Networks, Journal of Mathematics and Mechanics 8 (1959), 793–825.

    MATH  MathSciNet  Google Scholar 

  10. Gerhard Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, Partial Differential Equations and Calculus of Variations, Lec. Notes Math., vol. 1357, Springer, 1988, pp. 142–155.

    Article  MathSciNet  Google Scholar 

  11. _____, An algorithm for evolutionary surfaces, Num. Math. 58 (1991), 603–611.

    Article  MATH  MathSciNet  Google Scholar 

  12. Herbert Federer, Curvature measures, Trans. Amer. Math. 93 (1959), 418–491.

    Article  MATH  MathSciNet  Google Scholar 

  13. Joseph H.G. Fu, Convergence of curvatures in secant approximations, J. Differential Geometry 37 (1993), 177–190.

    MATH  Google Scholar 

  14. Mikhael Gromov, Structures métriques pour les variétés riemanniennes, Textes Mathématiques, Cedic/Fernand Nathan, 1981.

    Google Scholar 

  15. Klaus Hildebrandt, Konrad Polthier, and Max Wardetzky, On the convergence of metric and geometric properties of polyhedral surfaces, Geometricae Dedicata 123 (2006), 89–112.

    Article  MATH  MathSciNet  Google Scholar 

  16. Hermann Karcher and Konrad Polthier, Construction of triply periodic minimal surfaces, Phil. Trans. Royal Soc. Lond. 354 (1996), 2077–2104.

    MATH  MathSciNet  Google Scholar 

  17. Christian Mercat, Discrete Riemann surfaces and the Ising model, Communications in Mathematical Physics 218 (2001), no. 1, 177–216.

    Article  MATH  MathSciNet  Google Scholar 

  18. Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr, Discrete differential-geometry operators for triangulated 2-manifolds, Visualization and Mathematics III (H.-C. Hege and K. Polthier, eds.), Springer, Berlin, 2003, pp. 35–57.

    Google Scholar 

  19. Jean-Marie Morvan and Boris Thibert, Approximation of the normal vector field and the area of a smooth surface, Discrete and Computational Geometry 32 (2004), no. 3, 383–400.

    MATH  MathSciNet  Google Scholar 

  20. Ulrich Pinkall and Konrad Polthier, Computing discrete minimal surfaces and their conjugates, Experim. Math. 2 (1993), 15–36.

    MATH  MathSciNet  Google Scholar 

  21. Konrad Polthier, Unstable periodic discrete minimal surfaces, Geometric Analysis and Nonlinear Partial Differential Equations (S. Hildebrandt and H. Karcher, eds.), Springer, 2002, pp. 127–143.

    Google Scholar 

  22. _____, Computational aspects of discrete minimal surfaces, Global Theory of Minimal Surfaces (David Hoffman, ed.), CMI/AMS, 2005.

    Google Scholar 

  23. Konrad Polthier and Wayne Rossman, Index of discrete constant mean curvature surfaces, J. Reine Angew. Math. 549 (2002), 47–77.

    MATH  MathSciNet  Google Scholar 

  24. Yurii Grigorévich Reshetnyak, Geometry IV. Non-regular Riemannian geometry, Encyclopaedia of Mathematical Sciences, vol. 70, Springer-Verlag, 1993, pp. 3–164.

    MathSciNet  Google Scholar 

  25. Wayne Rossman, Infinite periodic discrete minimal surfaces without self-intersections, Balkan J. Geom. Appl. 10 (2005), no. 2, 106–128.

    MATH  MathSciNet  Google Scholar 

  26. Oded Schramm, Circle patterns with the combinatorics of the square grid, Duke Math. J. 86 (1997), 347–389.

    Article  MATH  MathSciNet  Google Scholar 

  27. Hermann Amandus Schwarz, Sur une définition erronée de l’aire d’une surface courbe, Gesammelte Mathematische Abhandlungen, vol. 2, Springer-Verlag, 1890, pp. 309–311.

    Google Scholar 

  28. William Peter Thurston, The geometry and topology of three-manifolds, www.msri.org/publications/books/gt3m.

    Google Scholar 

  29. Max Wardetzky, Discrete Differential Operators on Polyhedral Surfaces—Convergence and Approximation, Ph.D. Thesis, Freie Universität Berlin, 2006.

    Google Scholar 

  30. P. Wintgen, Normal cycle and integral curvature for polyhedra in Riemannian manifolds, Differential Geometry (Soós and Szenthe, eds.), 1982, pp. 805–816.

    Google Scholar 

  31. M. Zähle, Integral and current representations of Federer’s curvature measures, Arch. Math. 46 (1986), 557–567.

    Article  MATH  Google Scholar 

  32. William P. Ziemer, Weakly differentiable functions: Sobolev spaces and functions of bounded variation, GTM, Springer, New York, 1989.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Wardetzky, M. (2008). Convergence of the Cotangent Formula: An Overview. In: Bobenko, A.I., Sullivan, J.M., Schröder, P., Ziegler, G.M. (eds) Discrete Differential Geometry. Oberwolfach Seminars, vol 38. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8621-4_15

Download citation

Publish with us

Policies and ethics