Skip to main content

Ecological Intensification of Natural Resources Towards Sustainable Productive System

  • Chapter
  • First Online:
Ecological Intensification of Natural Resources for Sustainable Agriculture

Abstract

As per the estimates of FAO (Food and Agriculture Organization) world’s population would be requiring 60% more food in comparison to present times till 2050. The situation is worser due to limitation in terms of availability of arable lands. In this context, intensification in the agricultural sector is the basic requirement for both developed and developing nations. Intensification towards sustainability is an important aspect for sustainable utilization of resource and its management. Policy formulation, strategies and technological growth should take place at the scientific level and executed at the farmers level in order to reduce inputs and maximize the yield and productivity. This would also help in maintaining agro-biodiversity along with ecosystem services followed by livelihood sustenance. Therefore, innovation in the field of agroecology through incentive-based practices may give fruitful results. Ecological intensification (EI) has an integrated approach by improving production along with maintenance of environmental quality. EI addresses various issues such as food security as well as technological intervention in the form of organic farming, conservation agriculture, climate smart practices, etc. Above all it addresses the issues of environmental sustainability through proper strategy formulations, good governance and generation of awareness for adoption of EI for economic and ecological gain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EI:

Ecological Intensification

EU:

European Union

FAO:

Food and Agricultural Organization

GHGs:

Greenhouse Gases

NR:

Natural Resource

R&D:

Research and Development

SD:

Sustainable Development

SI:

Sustainable Intensification

References

  • Akinnefesi FK, Ajayi OC, Sileshi G, Chirwa PW, Chianu J (2010) Fertiliser trees for sustainable food security in the maize-based production systems of east and southern Africa. A review. Agron Sustain Dev 30:615–629. https://doi.org/10.1051/agro/2009058

    Article  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) ESA Working Paper No. 12–03, June. In: FAO. World agriculture towards 2030/2050: the 2012 revision, Rome. http://typo3.fao.org/fileadmin/templates/esa/Global_persepctives/world_ag_2030_50_2012_rev.pdf

  • Altieri MA, Funes-Monzote FR, Petersen P (2012) Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agron Sustain Dev 32:1–13. https://doi.org/10.1007/s13593-011-0065-6

    Article  Google Scholar 

  • Banerjee A, Jhariya MK, Yadav DK, Raj A (2020) Environmental and sustainable development through forestry and other resources. CRC Press, Boca Raton, FL, pp 1–400. https://doi.org/10.1201/9780429276026

    Book  Google Scholar 

  • Binyam AY, Desale KA (2015) Rain water harvesting: an option for dry land agriculture in arid and semi-arid Ethiopia. Int J Water Resour Environ Eng 7:17–28

    Google Scholar 

  • Blumenstein B, Siegmeier T, Selsam F (2018) A case of sustainable intensification: stochastic farm budget optimization considering internal economic benefits of biogas production in organic agriculture. Agric Syst 159:78–92

    Article  Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28(4):230–238. https://doi.org/10.1016/j.tree.2012.10.012

    Article  PubMed  Google Scholar 

  • Cassidy ES, West PC, Gerber JS, Foley JA (2013) Redefining agricultural yields: from tonnes to people nourished per hectare. Environ Res Lett 8(034015):8

    Google Scholar 

  • CGIAR (2011) Water for dry land farming with ZAI: A climate smart response in arid regions. https://www.iwmi.cgiar.org/wp-content/uploads/2011/11/zai.pdf

  • Clay N (2018) Seeking justice in green revolutions: synergies and trade-offs between large-scale and smallholder agricultural intensification in Rwanda. Geoforum 97:352–362

    Article  Google Scholar 

  • Cortner O, Garrett RD, Valentim JF (2019) Perceptions of integrated crop-livestock systems for sustainable intensification in the Brazilian Amazon. Land Policy 82:841–853

    Article  Google Scholar 

  • David LO, Kurt BW, Robert BR (2016) Sustainable intensification and farmer preferences for crop system attributes: evidence from Malawi’s central and southern regions. World Dev 87:139–151

    Article  Google Scholar 

  • de Abreu LS, Bellon S (2013) The dynamics and recomposition of agroecology in Latin America. In: Halberg N, MĂĽller A (eds) Organic agriculture for sustainable livelihoods, vol 10. Routledge, London, pp 223–245

    Google Scholar 

  • de Ponti T, Rijk B, van Ittersum M (2012) The crop yield gap between organic and conventional agriculture. Agric Syst 108:1–9. https://doi.org/10.1016/j.agsy.2011.12.004

    Article  Google Scholar 

  • FAO. (2001) Integrated production and pest management programme in West Africa. Gestion IntĂ©grĂ©e de la Production et des DĂ©prĂ©dateurs. Rome: FAO. http://www.fao.org/fileadmin/templates/agphome/documents/IPM/IPPM_West_Africa.pdf

  • FAO (2011a) Save and grow. A policymaker’s guide to the sustainable intensification of smallholder crop production. Food and Agriculture Organization of the United Nations, Rome, p 2011

    Google Scholar 

  • FAO (2011b) Global food losses and food waste: extent, causes and prevention. http://www.fao.org/docrep/014/mb060e/mb060e00.pdf

  • FAO (2012a) The state of food insecurity in the world, economic growth in necessary but not sufficient to accelerate reduction of hunger and malnutrition. FAO, Rome

    Google Scholar 

  • FAO (2012b) The state of world fisheries and aquaculture 2012. FAO, Rome

    Google Scholar 

  • Halberg N, Peramaiyan P, Walaga C (2009) Is organic farming an unjustified luxury in a world with too many hungry people? In: Willer H, Klicher L (eds) The world of organic agriculture, Statistics and Emerging Trends 2009. FiBL and IFOAM, Frick, Switzerland, pp 95–101

    Google Scholar 

  • Halberg N, Panneerselvam P, SĂ©bastien Treyer S (2015) Eco-functional intensification and food security: synergy or compromise? Sustain Agric Res 4(3):126–139. https://doi.org/10.5539/sar.v4n3p126

    Article  Google Scholar 

  • Harvey M, Pilgrim S (2011) The new competition for land: food, energy, and climate change. Food Policy 36:S40–S51. https://doi.org/10.1016/j.foodpol.2010.11.009

    Article  Google Scholar 

  • Harvey CA, Rakotobe ZL, Rao NS (2014) Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar. Philos Trans R Soc London 369:20130089

    Article  Google Scholar 

  • ICRISAT (2009) Fertilizer microdosing. Boosting production in unproductive lands. http://www.icrisat.org/impacts/impact-stories/icrisat-is-fertilizer-microdosing.pdf

  • Jhariya MK, Yadav DK (2017) Invasive alien species: challenges, threats and management. In: Rawat SK, Narain S (eds) Agriculture technology for sustaining rural growth. Biotech Books, New Delhi, India, pp 263–285

    Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A (2018a) Plant mediated transformation and habitat restoration: phytoremediation an eco-friendly approach. In: Gautam A, Pathak C (eds) Metallic contamination and its toxicity. Daya Publishing House, New Delhi, India, pp 231–247

    Google Scholar 

  • Jhariya MK, Banerjee A, Yadav DK, Raj A (2018b) Leguminous trees an innovative tool for soil sustainability. In: Meena RS, Das A, Yadav GS, Lal R (eds) Legumes for soil health and sustainable management. Springer, Cham, pp 315–345. https://doi.org/10.1007/978-981-13-0253-4_10

    Chapter  Google Scholar 

  • Jhariya MK, Banerjee A, Meena RS, Yadav DK (2019a) Sustainable agriculture, Forest and environmental management. Springer, Singapore, p 606. https://doi.org/10.1007/978-981-13-6830-1

    Book  Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A (2019b) Agroforestry and climate change: issues and challenges. CRC Press, Boca Raton, FL, p 335. https://doi.org/10.1201/9780429057274

    Book  Google Scholar 

  • Jonathan V, Vigne M, VĂ©ronique A (2011) Integrated participatory modelling of actual farms to support policy making on sustainable intensification. Agric Syst 104:146–161

    Article  Google Scholar 

  • Kabat P (2013) Water at a crossroads. Nat Clim Chang 3:11–12

    Article  Google Scholar 

  • Kassie M, Teklewold H, Jaleta M (2015) Understanding the adoption of a portfolio of sustainable intensification practices in eastern and southern Africa. Land Use Policy 42:400–411

    Article  Google Scholar 

  • Kennedy TA, Naeem S, Howe KM, Knops JMH, Tilman D, Reich P (2002) Biodiversity as a barrier to ecological invasion. Nature 417:636–638

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Jhariya MK, Yadav DK, Banerjee A (2020a) Herbaceous dynamics and CO2 mitigation in an urban setup- a case study from Chhattisgarh, India. Environ Sci Pollut Res 27(3):2881–2897. https://doi.org/10.1007/s11356-019-07182-8

    Article  CAS  Google Scholar 

  • Khan N, Jhariya MK, Yadav DK, Banerjee A (2020b) Structure, diversity and ecological function of shrub species in an urban setup of Sarguja, Chhattisgarh, India. Environ Sci Pollut Res 27(5):5418–5432. https://doi.org/10.1007/s11356-019-07172-w

    Article  CAS  Google Scholar 

  • Kirchmann H, Bergström L, Kätterer T, AndrĂ©n O, Andersson R (2008) Chapter 3: can organic crop production feed the world. In: Kirchman H and L Bergström: Organic crop production – ambitions and limitations. (pp. 39–72). Springer, Cham

    Chapter  Google Scholar 

  • Kremen C, Miles A (2012) Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol Soc 17(4):40. https://doi.org/10.5751/ES-05035-17440

    Article  Google Scholar 

  • Kumar S, Meena RS, Jhariya MK (2020) Resources use efficiency in agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-6953-1

    Book  Google Scholar 

  • Lipper L, Thornton P, Campbell BM, Baedeker T, Braimoh A, Bwalya M, Caron P, Cattaneo A, Garrity D, Henry K, Hottle R, Jackson L, Jarvis A, Kossam F, Mann W, McCarthy N, Meybeck A, Neufeldt H, Remington T, Thi Sen P, Sessa R, Shula R, Tibu A, Torquebiau EF (2014) Climate-smart agriculture for food security. Nat Clim Chang 4:1068–1072. https://doi.org/10.1038/nclimate2437

    Article  Google Scholar 

  • Mace GM, Cramer W, Diaz S, Faith DP, Larigauderie A, Le Prestre P, Palmer M, Perrings C, Scholes RJ, Walpole M, Walther BA, Watson JEM, Mooney HA (2010) Biodiversity targets after 2010. Curr Opin Environ Sustain 2:3–8. https://doi.org/10.1016/j.cosust.2010.03.003

    Article  Google Scholar 

  • Malezieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sustain Dev 29(1):43–62. https://doi.org/10.1051/agro:2007057

    Article  Google Scholar 

  • MEA (2005) Ecosystems and human well-being: synthesis. http://www.millenniumassessment.org/documents/document.356.aspx.pdf

  • Meena RS, Lal R (2018) Legumes for soil health and sustainable management. Springer, Singapore, p 541. https://doi.org/10.1007/978-981-13-0253-4_10

    Book  Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijaykumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020) Impact of agrochemicals on soil microbiota and management: a review. Land (MDPI) 9(2):34. https://doi.org/10.3390/land9020034

    Article  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020a) Long term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in Central Ohio, USA. Geoderma 363:1141164

    Article  CAS  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020b) Long-term impact of topsoil depth and amendments on carbon and nitrogen budgets in the surface layer of an Alfisol in Central Ohio. Catena 194:104752

    Article  CAS  Google Scholar 

  • Nath TK, Jashimuddin M, Kamrul HM (2016) The sustainable intensification of agroforestry in shifting cultivation areas of Bangladesh. Agrofor Syst 90:405–416

    Article  Google Scholar 

  • Ndiritu SW, Kassie M, Shiferaw B (2014) Are there systematic gender differences in the adoption of sustainable agricultural intensification practices? evidence from Kenya. Food Policy 49:117–127

    Article  Google Scholar 

  • Petersen B, Snapp S (2015) What is sustainable intensification? Views from experts. Land Use Policy 46:1–10

    Article  Google Scholar 

  • Ponisio L, M’Gonigle LK, Mace KC, Palomino J, de Vaopine P, Kremen C (2015) Diversification practices reduce organic to conventional yield gap. Proc Roy Soc B 282:20141396. https://doi.org/10.1098/rspb.2014.1396

    Article  Google Scholar 

  • Porter JR, Xie L (2014) Food security and food production systems. In: Field CB et al (eds) Climate change 2014: impacts adaptation and vulnerability. IPCC, Cambridge University Press, Cambridge, UK, pp 458–533

    Google Scholar 

  • Pretty J, Noble AD, Bossio D, Dixon J, Hine RE, Penning de Vries FWT, Morison JIL (2006) Resource-conserving agriculture increases yields in developing countries. Environ Sci Technol 40(4):1114–1119. https://doi.org/10.1021/es051670d

    Article  CAS  PubMed  Google Scholar 

  • Pretty J, Toulmin C, Williams S (2011) Sustainable intensification in African agriculture. Int J Agric Sustain 9:5–24

    Article  Google Scholar 

  • Rahn E, Liebig T, Ghazoul J (2018) Opportunities for sustainable intensification of coffee agro-ecosystems along an altitudinal gradient on Mt. Elgon, Uganda. Agric Ecosyst Environ 263:31–40

    Article  Google Scholar 

  • Raj A, Jhariya MK, Harne SS (2018) Threats to biodiversity and conservation strategies. In: Sood KK, Mahajan V (eds) Forests, climate change and biodiversity. Kalyani Publisher, India, pp 304–320

    Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A, Meena RS (2019a) Agroforestry: a holistic approach for agricultural sustainability. In: Jhariya MK, Banerjee A, Meena RS, Yadav DK (eds) Sustainable agriculture, forest and environmental management. Springer, Singapore, pp 101–131. https://doi.org/10.1007/978-981-13-6830-1

    Chapter  Google Scholar 

  • Raj A, Jhariya MK, Banerjee A, Yadav DK, Meena RS (2019b) Soil for sustainable environment and ecosystems management. In: Jhariya MK, Banerjee A, Meena RS, Yadav DK (eds) Sustainable agriculture, forest and environmental management. Springer, Singapore, pp 189–221. https://doi.org/10.1007/978-981-13-6830-1

    Chapter  Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A (2020) Climate change and agroforestry systems: adaptation and mitigation strategies. CRC Press, Boca Raton, FL, pp 1–383. https://doi.org/10.1201/9780429286759

    Book  Google Scholar 

  • Reij C, Tappan G, Smale M (2009) Agroenvironmental transformation in the Sahel: another kind of “Green Revolution”. International food Policy research institute (IFPRI). IFPRI discussion paper 00914, Washington, DC, p 43

    Google Scholar 

  • Rolando JL, Turin C, RamĂšrez DA (2017) Key ecosystem services and ecological intensification of agriculture in the tropical high-Andean Puna as affected by landuse and climate changes. Agric Ecosyst Environ 236:221–233

    Google Scholar 

  • Royal Society (2009) Reaping the benefits: science and the sustainable intensification of global agriculture. Royal Society, London

    Google Scholar 

  • Sawadogo H (2011) Using soil and water conservation techniques to rehabilitate degraded lands in northwestern Burkina Faso. Int J Agric Sustain 9:120–128

    Article  Google Scholar 

  • Schiefer J, Lair GJ, Blum WEH (2015) Indicators for the definition of land quality as a basis for the sustainable intensification of agricultural production. Int Soil Water Conserv Res 3:42–49

    Article  Google Scholar 

  • Shaver I, Chain-Guadarrama A, Cleary KA (2015) Coupled social and ecological outcomes of agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions. Glob Environ Chang 32:74–86

    Article  Google Scholar 

  • Singh K (2009) Environmental degradation and measures for its mitigation with special reference to India’s agricultural sector. Ind J Agri Econ 64(1):40–61

    Google Scholar 

  • Snapp SS, Grabowski P, Chikowo R (2018) Maize yield and profitability tradeoffs with social, human and environmental performance: is sustainable intensification feasible? Agric Syst 162:77–88

    Article  Google Scholar 

  • Soderstrom B, Svensson B, Vessby K, Glimskar A (2001) Plants, insects and birds in semi-natural pastures in relation to local habitat and landscape factors. Biodivers Conserv 10:1839–1863

    Article  Google Scholar 

  • Song Y, Li J (2011) The role of biodiversity, traditional knowledge and participatory plant breeding in climate change adaptation in karst mountain areas in SW China. Chinese Centre for Agricultural Policy, Beijing

    Google Scholar 

  • SRI International Network and Resources Center (2014) Improving and scaling up the system of rice intensification in West Africa. Technical Manual for SRI in West Africa, August 2014, Version 2, (SRI-Rice), Ithaca, New York, pp. 1–57

    Google Scholar 

  • Stevenson J, Byerlee D, Villoria N, Kelley T, Maredia M (2011) Agricultural technology, global land use and deforestation: a review. CGIAR. http://impact.cgiar.org/sites/default/files/images/SPIAlandJune2011.pdf

  • Storkey J, Meyer S, Still KS, Leuschner C (2012) The impact of agricultural intensification and land-use change on the European arable flora. Proc Royal Soc B 279:1421–1429. https://doi.org/10.1098/rspb.2011.1686

    Article  CAS  Google Scholar 

  • Sutcliffe LME, Batary P, Kormann U, Baldi A, Dicks LV, Herzon I, Kleijn D, Tryjanowski P, Apostolova I, Arlettaz R, Aunins A, Aviron S, Balezentien L, Fischer C, Halada L, Hartel T, Helm A, Hristov I, Jelaska SD, Kaligaric M, Kamp J, Klimek S, Koorberg P, Kostiukova J, Kovacs-Hostyanszki A, Kuemmerle T, Leuschner C, Lindborg R, Loos J, Maccherini S, Marja R, Mathe O, Paulini I, Proenca V, Rey-Benayas J, Sans FX, Seifert C, Stalenga J, Timaeus J, Torok P, van Swaay C, Viik E, Tscharntke T (2015) Harnessing the biodiversity value of central and eastern European farmland. Diversity Distrib 21:722–730. https://doi.org/10.1111/ddi.12288

    Article  Google Scholar 

  • Te Pas CM, Rees RM (2014) Analyses of differences in productivity, profitability and soil fertility between organic and conventional cropping Systems in the Tropics and sub-tropics. J Integrative Agric 13(10):2299–2310

    Article  Google Scholar 

  • Tittonell P (2014) Ecological intensification of agriculture – sustainable by nature. Curr Opin Environ Sustain 8:53–61. https://doi.org/10.1016/j.cosust.2014.08.006

    Article  Google Scholar 

  • Tittonell P, Giller KE (2013) When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. Field Crops Res 143:76–90

    Article  Google Scholar 

  • Tryjanowski P, Dajok Z, Kujawa K, KaĹ‚uski T, MrĂłwczyĹ„ski M (2011) Threats to biodiversity in farmland: are results from Western Europe good solution for Poland? Polish J Agron 7:113–119

    Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x

    Article  Google Scholar 

  • UNEP (2010) A report of the working group on the environmental impacts of products and materials to the international panel for sustainable resource management. In: Hertwich E, van der Voet E, Suh S, Tukker A, Huijbregts M, Kazmierczyk P, Lenzen M, McNeely J, Moriguchi Y (eds) Assessing the environmental impacts of consumption and production: priority product and materials. UNEP, Nairobi

    Google Scholar 

  • UNEPWCMC (2011) The UK National Ecosystem Assessment: synthesis of the key findings, Cambridge, UK, p 85

    Google Scholar 

  • Vanlauwe B, Coyne D, Gockowski J (2014) Sustainable intensification and the African smallholder farmer. Curr Opin Environ Sustain 8:15–22

    Article  Google Scholar 

  • Vidal J (2013) India’s rice revolution. The Guardian. http://www.guardian.co.uk/globaldevelopment/2013/feb/16/india-rice-farmers-revolution

  • Weltin M, Zasada I, Piorr A (2018) Conceptualising fields of action for sustainable intensification-a systematic literature review and application to regional case studies. Agric Ecosyst Environ 257:68–80

    Article  Google Scholar 

  • Wezel A, Soboksa G, Mcclelland S (2015) The blurred boundaries of ecological, sustainable, and agroecological intensification: a review. Agron Sustain Dev 35:1283–1295

    Article  Google Scholar 

  • Willy KD, Muyanga M, Jayne T (2019) Can economic and environmental benefits associated with agricultural intensification be sustained at high population densities? A farm level empirical analysis. Land Use Policy 81:100–110

    Article  Google Scholar 

  • World Agroforestry Centre (n.d.) Faidherbia Albida. Keystone of evergreen agriculture in Africa. http://www.worldagroforestry.org/sites/default/files/F.a_keystone_of_Ev_Ag.pdf

  • Xie H, Huang Y, Chen Q, Zhang Y, Wu Q (2019) Prospects for agricultural sustainable intensification: a review of research. Land 8:157. https://doi.org/10.3390/land8110157

    Article  Google Scholar 

  • Yami M, Van AP (2017) Policy support for sustainable crop intensification in eastern Africa. J Rural Stud 55:216–226

    Article  Google Scholar 

  • Zaal F, Oostendorp RH (2002) Explaining a miracle: intensification and the transition towards sustainable small-scale agriculture in Dryland Machakos and Kitui districts, Kenya. World Dev 30:1271–1287

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jhariya, M.K., Meena, R.S., Banerjee, A. (2021). Ecological Intensification of Natural Resources Towards Sustainable Productive System. In: Jhariya, M.K., Meena, R.S., Banerjee, A. (eds) Ecological Intensification of Natural Resources for Sustainable Agriculture . Springer, Singapore. https://doi.org/10.1007/978-981-33-4203-3_1

Download citation

Publish with us

Policies and ethics