Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

KdV conformal symmetry breaking in nearly AdS2

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 08 October 2024
  • Volume 2024, article number 52, (2024)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
KdV conformal symmetry breaking in nearly AdS2
Download PDF
  • Marcela Cárdenas  ORCID: orcid.org/0000-0002-1897-890X1 
  • 174 Accesses

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We study the gauge theory formulation of Jackiw-Teitelboim gravity and propose Korteweg-de Vries asymptotic conditions that generalize the asymptotic dynamics of the theory. They permit to construct an enlarged set of boundary actions formed by higher order generalizations of the Schwarzian derivative that contain the Schwarzian as lower term in a tower of SL(2, ℝ) invariants. They are extracted from the KdV Hamiltonians and can be obtained recursively. As a result, the conformal symmetry breaking observed in nearly AdS2 is characterized by a much larger set of dynamical modes associated to the stationary KdV hierarchy. We study quantum perturbation theory for the generalized Schwarzian action including the symplectic measure and compute the one-loop correction to the partition function. We find that despite the non-linear nature of the higher-Schwarzian contribution, it acquires a manageable expression that renders a curious leading temperature dependence on the entropy S = #Ta for a an odd integer.

Article PDF

Download to read the full article text

Similar content being viewed by others

Asymptotic symmetries, holography and topological hair

Article Open access 03 January 2018

Thermal order in large N conformal gauge theories

Article Open access 21 April 2021

Gravitational free energy in topological AdS/CFT

Article Open access 18 September 2018

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Classical and Quantum Gravity
  • General Relativity
  • Gravitational Physics
  • K-Theory
  • Mathematical Physics
  • Theoretical Astrophysics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  2. C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].

  3. A. Kitaev, A simple model of quantum holography (part 1), talk at KITP, April 7, 2015, http://online.kitp.ucsb.edu/online/entangled15/kitaev/.

  4. A. Kitaev, A simple model of quantum holography (part 2), talk at KITP, May 27, 2015, http://online.kitp.ucsb.edu/online/entangled15/kitaev2/.

  5. S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

  6. S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].

  7. J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].

    Article  ADS  Google Scholar 

  8. K. Jensen, Chaos in AdS2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].

  9. J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].

  10. A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP 05 (2018) 183 [arXiv:1711.08467] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. D. Grumiller, J. Salzer and D. Vassilevich, AdS2 holography is (non-)trivial for (non-)constant dilaton, JHEP 12 (2015) 015 [arXiv:1509.08486] [INSPIRE].

    ADS  Google Scholar 

  12. D. Grumiller et al., Menagerie of AdS2 boundary conditions, JHEP 10 (2017) 203 [arXiv:1708.08471] [INSPIRE].

    Article  ADS  Google Scholar 

  13. V. Godet and C. Marteau, New boundary conditions for AdS2, JHEP 12 (2020) 020 [arXiv:2005.08999] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Hotta, Asymptotic isometry and two-dimensional anti-de Sitter gravity, gr-qc/9809035 [INSPIRE].

  15. M. Cadoni and S. Mignemi, Asymptotic symmetries of AdS2 and conformal group in d = 1, Nucl. Phys. B 557 (1999) 165 [hep-th/9902040] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. Navarro-Salas and P. Navarro, AdS2/CFT1 correspondence and near extremal black hole entropy, Nucl. Phys. B 579 (2000) 250 [hep-th/9910076] [INSPIRE].

    Article  ADS  Google Scholar 

  17. W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [Addendum ibid. 95 (2017) 069904] [arXiv:1610.08917] [INSPIRE].

  18. J. Murugan, D. Stanford and E. Witten, More on Supersymmetric and 2d Analogs of the SYK Model, JHEP 08 (2017) 146 [arXiv:1706.05362] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. K. Bulycheva, \( \mathcal{N} \) = 2 SYK model in the superspace formalism, JHEP 04 (2018) 036 [arXiv:1801.09006] [INSPIRE].

  20. A. Biggs, J. Maldacena and V. Narovlansky, A supersymmetric SYK model with a curious low energy behavior, JHEP 08 (2024) 124 [arXiv:2309.08818] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  21. K. Bulycheva, A note on the SYK model with complex fermions, JHEP 12 (2017) 069 [arXiv:1706.07411] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Chaturvedi, Y. Gu, W. Song and B. Yu, A note on the complex SYK model and warped CFTs, JHEP 12 (2018) 101 [arXiv:1808.08062] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. Y. Gu, A. Kitaev, S. Sachdev and G. Tarnopolsky, Notes on the complex Sachdev-Ye-Kitaev model, JHEP 02 (2020) 157 [arXiv:1910.14099] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Almheiri and J. Polchinski, Models of AdS2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].

    Article  ADS  Google Scholar 

  25. R. Harmelin, Aharonov invariants and univalent functions, Israel J. Math. 43 (1982) 244.

    Article  MathSciNet  Google Scholar 

  26. H. Tamanoi, Higher Schwarzian operators and combinatorics of the Schwarzian derivative, Math. Ann. 305 (1996) 127.

    Article  MathSciNet  Google Scholar 

  27. S.-A. Kim, Some generalized higher schwarzian operators, The Pure and Applied Mathematics 16 (2009) 1.

    MathSciNet  Google Scholar 

  28. A. Galajinsky, Remarks on higher Schwarzians, Phys. Lett. B 843 (2023) 138042 [arXiv:2302.00317] [INSPIRE].

  29. S. Krivonos, Origin of higher Schwarzians, Phys. Rev. D 109 (2024) 065029 [arXiv:2401.10532] [INSPIRE].

  30. Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, A Low Temperature Expansion for Matrix Quantum Mechanics, JHEP 05 (2015) 136 [arXiv:1304.1593] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. K. Okuyama and K. Sakai, JT gravity, KdV equations and macroscopic loop operators, JHEP 01 (2020) 156 [arXiv:1911.01659] [INSPIRE].

  32. A. Blommaert, J. Kruthoff and S. Yao, An integrable road to a perturbative plateau, JHEP 04 (2023) 048 [arXiv:2208.13795] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. R. Sasaki and I. Yamanaka, Virasoro Algebra, Vertex Operators, Quantum Sine-Gordon and Solvable Quantum Field Theories, Adv. Stud. Pure Math. 16 (1988) 271 [INSPIRE].

  34. B.A. Kupershmidt and P. Mathieu, Quantum Korteweg-de Vries Like Equations and Perturbed Conformal Field Theories, Phys. Lett. B 227 (1989) 245 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys. 177 (1996) 381 [hep-th/9412229] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. M. Asrat, KdV charges and the generalized torus partition sum in \( T\overline{T} \) deformation, Nucl. Phys. B 958 (2020) 115119 [arXiv:2002.04824] [INSPIRE].

  37. A. Pérez, D. Tempo and R. Troncoso, Boundary conditions for General Relativity on AdS3 and the KdV hierarchy, JHEP 06 (2016) 103 [arXiv:1605.04490] [INSPIRE].

    Article  ADS  Google Scholar 

  38. H.A. González, J. Matulich, M. Pino and R. Troncoso, Revisiting the asymptotic dynamics of General Relativity on AdS3, JHEP 12 (2018) 115 [arXiv:1809.02749] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Cárdenas, F. Correa, K. Lara and M. Pino, Integrable Systems and Spacetime Dynamics, Phys. Rev. Lett. 127 (2021) 161601 [arXiv:2104.09676] [INSPIRE].

  40. T. Fukuyama and K. Kamimura, Gauge Theory of Two-dimensional Gravity, Phys. Lett. B 160 (1985) 259 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. C. Fefferman and C.R. Graham, The ambient metric, Ann. Math. Stud. 178 (2011) 1 [arXiv:0710.0919] [INSPIRE].

    Google Scholar 

  42. M.M. Roberts, Time evolution of entanglement entropy from a pulse, JHEP 12 (2012) 027 [arXiv:1204.1982] [INSPIRE].

    Article  ADS  Google Scholar 

  43. E. Witten, Coadjoint Orbits of the Virasoro Group, Commun. Math. Phys. 114 (1988) 1 [INSPIRE].

  44. I. Bakas, Orbits of Diff S1 in the space of quadratic differentials, Nucl. Phys. B Proc. Suppl. 6 (1989) 137 [INSPIRE].

  45. A. Alekseev and S.L. Shatashvili, Path Integral Quantization of the Coadjoint Orbits of the Virasoro Group and 2D Gravity, Nucl. Phys. B 323 (1989) 719 [INSPIRE].

    Article  ADS  Google Scholar 

  46. O. Babelon, D. Bernard and M. Talon, Introduction to Classical Integrable Systems, Cambridge University Press (2003) [https://doi.org/10.1017/CBO9780511535024] [INSPIRE].

  47. E. Witten, On quantum gauge theories in two-dimensions, Commun. Math. Phys. 141 (1991) 153 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].

  49. T.G. Mertens and G.J. Turiaci, Solvable models of quantum black holes: a review on Jackiw-Teitelboim gravity, Living Rev. Rel. 26 (2023) 4 [arXiv:2210.10846] [INSPIRE].

    Article  Google Scholar 

  50. A. Almheiri and B. Kang, Conformal Symmetry Breaking and Thermodynamics of Near-Extremal Black Holes, JHEP 10 (2016) 052 [arXiv:1606.04108] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. P. Nayak et al., On the Dynamics of Near-Extremal Black Holes, JHEP 09 (2018) 048 [arXiv:1802.09547] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. D. Kapec and A. Lupsasca, Particle motion near high-spin black holes, Class. Quant. Grav. 37 (2020) 015006 [arXiv:1905.11406] [INSPIRE].

  53. A. Castro and V. Godet, Breaking away from the near horizon of extreme Kerr, SciPost Phys. 8 (2020) 089 [arXiv:1906.09083] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  54. M. Matone, Uniformization theory and 2-D gravity. 1. Liouville action and intersection numbers, Int. J. Mod. Phys. A 10 (1995) 289 [hep-th/9306150] [INSPIRE].

  55. I. Bakas, Conformal Invariance, the KdV Equation and Coadjoint Orbits of the Virasoro Algebra, Nucl. Phys. B 302 (1988) 189 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  56. A. Maloney, G.S. Ng, S.F. Ross and I. Tsiares, Generalized Gibbs Ensemble and the Statistics of KdV Charges in 2D CFT, JHEP 03 (2019) 075 [arXiv:1810.11054] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  57. A. Dymarsky and K. Pavlenko, Generalized Gibbs Ensemble of 2d CFTs at large central charge in the thermodynamic limit, JHEP 01 (2019) 098 [arXiv:1810.11025] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  58. E.M. Brehm and D. Das, Korteweg-de Vries characters in large central charge CFTs, Phys. Rev. D 101 (2020) 086025 [arXiv:1901.10354] [INSPIRE].

  59. D. Stanford and E. Witten, Fermionic Localization of the Schwarzian Theory, JHEP 10 (2017) 008 [arXiv:1703.04612] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  60. J.J. Duistermaat and G.J. Heckman, On the Variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982) 259 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  61. T. Karki and A.J. Niemi, On the Duistermaat-Heckman formula and integrable models, in the proceedings of the 27th International Ahrenshoop Symposium on Particle Theory, Wendisch-Rietz, Germany, September 07–11 (1993) [hep-th/9402041] [INSPIRE].

  62. P.J. Olver, Applications of Lie Groups to Differential Equations, Springer New York (1986) [https://doi.org/10.1007/978-1-4684-0274-2].

  63. J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially funded by Agencia Nacional de Investigación y Desarrollo (ANID) through Anillo Grant ACT210100. The author thanks Francisco Correa, Anatoly Dymarski and Alfredo Pérez for discussions. Special gratitude to Hernán A. González, for his collaboration in an initial stage of this work and for fruitful subsequent discussions.

Author information

Authors and Affiliations

  1. Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Recoleta, Santiago, Chile

    Marcela Cárdenas

Authors
  1. Marcela Cárdenas
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Marcela Cárdenas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2405.03128

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cárdenas, M. KdV conformal symmetry breaking in nearly AdS2. J. High Energ. Phys. 2024, 52 (2024). https://doi.org/10.1007/JHEP10(2024)052

Download citation

  • Received: 07 May 2024

  • Accepted: 11 September 2024

  • Published: 08 October 2024

  • DOI: https://doi.org/10.1007/JHEP10(2024)052

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • 2D Gravity
  • Gauge-Gravity Correspondence
  • Field Theories in Lower Dimensions
  • Black Holes
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature