Abstract
We derive a novel BPS bound from chiral perturbation theory minimally coupled to electrodynamics at finite isospin chemical potential. At a critical value of the isospin chemical potential, a system of three first-order differential field equations (which implies the second-order field equations) for the gauge field and the hadronic profile can be derived from the requirement to saturate the bound. These BPS configurations represent magnetic multi-vortices with quantized flux supported by a superconducting current. The corresponding topological charge density is related to the magnetic flux density, but is screened by the hadronic profile. Such a screening effect allows to derive the maximal value of the magnetic field generated by these BPS magnetic vortices, being Bmax = 2, 04 × 1014 G. The solution for a single BPS vortex is discussed in detail, and some physical consequences, together with the comparison with the magnetic vortices in the Ginzburg-Landau theory at critical coupling, are described.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
P. de Forcrand, Simulating QCD at finite density, PoS LAT2009 (2009) 010 [arXiv:1005.0539] [INSPIRE].
J.B. Kogut and M.A. Stephanov, The phases of Quantum Chromodynamics, Cambridge University Press (2004).
N. Brambilla et al., QCD and Strongly Coupled Gauge Theories: Challenges and Perspectives, Eur. Phys. J. C 74 (2014) 2981 [arXiv:1404.3723] [INSPIRE].
R. Pisarski, Three Lectures on QCD Phase Transitions, Lect. Notes Phys. 999 (2022) 89 [INSPIRE].
A. Bzdak et al., Mapping the Phases of Quantum Chromodynamics with Beam Energy Scan, Phys. Rept. 853 (2020) 1 [arXiv:1906.00936] [INSPIRE].
K. Nagata, Finite-density lattice QCD and sign problem: Current status and open problems, Prog. Part. Nucl. Phys. 127 (2022) 103991 [arXiv:2108.12423] [INSPIRE].
N.Y. Astrakhantsev et al., Lattice Study of QCD Properties under Extreme Conditions: Temperature, Density, Rotation, and Magnetic Field, Phys. Part. Nucl. 52 (2021) 536 [INSPIRE].
N. Astrakhantsev et al., Electromagnetic conductivity of quark-gluon plasma at non-zero baryon density, PoS LATTICE2021 (2022) 119 [arXiv:2110.10727] [INSPIRE].
B.B. Brandt et al., Thermal QCD in a non-uniform magnetic background, JHEP 11 (2023) 229 [arXiv:2305.19029] [INSPIRE].
W. Busza, K. Rajagopal and W. van der Schee, Heavy Ion Collisions: The Big Picture, and the Big Questions, Ann. Rev. Nucl. Part. Sci. 68 (2018) 339 [arXiv:1802.04801] [INSPIRE].
K. Yagi, T. Hatsuda and Y. Miake, Quark-Gluons Plasma, Cambridge University Press (2005).
D.T. Son and M.A. Stephanov, QCD at finite isospin density, Phys. Rev. Lett. 86 (2001) 592 [hep-ph/0005225] [INSPIRE].
J.B. Kogut and D.K. Sinclair, Lattice QCD at finite isospin density at zero and finite temperature, Phys. Rev. D 66 (2002) 034505 [hep-lat/0202028] [INSPIRE].
P. Adhikari, J.O. Andersen and P. Kneschke, Two-flavor chiral perturbation theory at nonzero isospin: Pion condensation at zero temperature, Eur. Phys. J. C 79 (2019) 874 [arXiv:1904.03887] [INSPIRE].
P. Adhikari and J.O. Andersen, Quark and pion condensates at finite isospin density in chiral perturbation theory, Eur. Phys. J. C 80 (2020) 1028 [arXiv:2003.12567] [INSPIRE].
P. Adhikari, J.O. Andersen and M.A. Mojahed, Condensates and pressure of two-flavor chiral perturbation theory at nonzero isospin and temperature, Eur. Phys. J. C 81 (2021) 173 [arXiv:2010.13655] [INSPIRE].
J.O. Andersen, M. Kjøllesdal, Q. Yu and H. Zhou, Chiral perturbation theory and Bose-Einstein condensation in QCD, arXiv:2312.13092 [INSPIRE].
T. Kojo and D. Suenaga, Peaks of sound velocity in two color dense QCD: Quark saturation effects and semishort range correlations, Phys. Rev. D 105 (2022) 076001 [arXiv:2110.02100] [INSPIRE].
N. Kovensky and A. Schmitt, Isospin asymmetry in holographic baryonic matter, SciPost Phys. 11 (2021) 029 [arXiv:2105.03218] [INSPIRE].
N. Kovensky, A. Poole and A. Schmitt, Phases of cold holographic QCD: Baryons, pions and rho mesons, SciPost Phys. 15 (2023) 162 [arXiv:2302.10675] [INSPIRE].
R.D. Pisarski and F. Wilczek, Remarks on the Chiral Phase Transition in Chromodynamics, Phys. Rev. D 29 (1984) 338 [INSPIRE].
L.Y. Glozman, O. Philipsen and R.D. Pisarski, Chiral spin symmetry and the QCD phase diagram, Eur. Phys. J. A 58 (2022) 247 [arXiv:2204.05083] [INSPIRE].
B.B. Brandt, G. Endrodi and S. Schmalzbauer, QCD at finite isospin chemical potential, EPJ Web Conf. 175 (2018) 07020 [arXiv:1709.10487] [INSPIRE].
S. Carignano et al., Scrutinizing the pion condensed phase, Eur. Phys. J. A 53 (2017) 35 [arXiv:1610.06097] [INSPIRE].
M. Mannarelli, Meson condensation, Particles 2 (2019) 411 [arXiv:1908.02042] [INSPIRE].
N. Manton and P. Sutcliffe, Topological Solitons, Cambridge University Press, Cambridge (2007).
E. Shuryak, Nonperturbative Topological Phenomena in QCD and Related Theories, Lect. Notes Phys. 997 (2021) [INSPIRE].
M. Shifman, Advanced Topics in Quantum Field Theory: A Lecture Course, Cambridge University Press (2022).
E.J. Weinberg, Classical solutions in quantum field theory: Solitons and Instantons in High Energy Physics, Cambridge University Press (2012) [https://doi.org/10.1017/CBO9781139017787] [INSPIRE].
P. Adhikari and J. Choi, Magnetic Vortices in the Abelian Higgs Model with Derivative Interactions, Int. J. Mod. Phys. A 33 (2019) 1850215 [arXiv:1810.00917] [INSPIRE].
P. Adhikari, Magnetic Vortex Lattices in Finite Isospin Chiral Perturbation Theory, Phys. Lett. B 790 (2019) 211 [arXiv:1810.03663] [INSPIRE].
G.W. Evans and A. Schmitt, Chiral anomaly induces superconducting baryon crystal, JHEP 09 (2022) 192 [arXiv:2206.01227] [INSPIRE].
G.W. Evans and A. Schmitt, Chiral Soliton Lattice turns into 3D crystal, JHEP 02 (2024) 041 [arXiv:2311.03880] [INSPIRE].
A. Edery, Non-singular vortices with positive mass in 2+1-dimensional Einstein gravity with AdS3 and Minkowski background, JHEP 01 (2021) 166 [arXiv:2004.09295].
A. Edery, Nonminimally coupled gravitating vortex: Phase transition at critical coupling ξc in AdS3, Phys. Rev. D 106 (2022) 065017 [arXiv:2205.12175] [INSPIRE].
Z. Qiu and M. Nitta, Baryonic vortex phase and magnetic field generation in QCD with isospin and baryon chemical potentials, JHEP 06 (2024) 139 [arXiv:2403.07433] [INSPIRE].
M. Eto, K. Nishimura and M. Nitta, Phase diagram of QCD matter with magnetic field: domain-wall Skyrmion chain in chiral soliton lattice, JHEP 12 (2023) 032 [arXiv:2311.01112] [INSPIRE].
M. Eto, K. Nishimura and M. Nitta, How baryons appear in low-energy QCD: Domain-wall Skyrmion phase in strong magnetic fields, arXiv:2304.02940 [INSPIRE].
M. Eto and M. Nitta, Chiral non-Abelian vortices and their confinement in three flavor dense QCD, Phys. Rev. D 104 (2021) 094052 [arXiv:2103.13011] [INSPIRE].
F. Canfora, Phys. Rev. D 88, (2013), 065028. F. Canfora, Nonlinear superposition law and Skyrme crystals, Phys. Rev. D 88 (2013) 065028 [arXiv:1307.0211] [INSPIRE].
F. Canfora, Ordered arrays of Baryonic tubes in the Skyrme model in (3 + 1) dimensions at finite density, Eur. Phys. J. C 78 (2018) 929 [arXiv:1807.02090] [INSPIRE].
F. Canfora, S.H. Oh and A. Vera, Analytic crystals of solitons in the four dimensional gauged non-linear sigma model, Eur. Phys. J. C 79 (2019) 485 [arXiv:1905.12818] [INSPIRE].
F. Canfora, M. Lagos and A. Vera, Crystals of superconducting Baryonic tubes in the low energy limit of QCD at finite density, Eur. Phys. J. C 80 (2020) 697 [arXiv:2007.11543] [INSPIRE].
F. Canfora et al., Pion crystals hosting topologically stable baryons, Phys. Rev. D 103 (2021) 076003 [arXiv:2012.05921] [INSPIRE].
P.D. Alvarez, F. Canfora, N. Dimakis and A. Paliathanasis, Integrability and chemical potential in the (3 + 1)-dimensional Skyrme model, Phys. Lett. B 773 (2017) 401 [arXiv:1707.07421] [INSPIRE].
F. Canfora, N. Dimakis and A. Paliathanasis, Analytic Studies of Static and Transport Properties of (Gauged) Skyrmions, Eur. Phys. J. C 79 (2019) 139 [arXiv:1902.01563] [INSPIRE].
S.L. Cacciatori et al., Analytic multi-Baryonic solutions in the SU(N)-Skyrme model at finite density, JHEP 12 (2021) 150 [arXiv:2105.10789] [INSPIRE].
S.L. Cacciatori et al., Cooking pasta with Lie groups, Nucl. Phys. B 976 (2022) 115693 [arXiv:2201.12598] [INSPIRE].
E.J. Weinberg, Multivortex Solutions of the Ginzburg-landau Equations, Phys. Rev. D 19 (1979) 3008 [INSPIRE].
S. Scherer and M.R. Schindler, A Primer for Chiral Perturbation Theory, Lect. Notes Phys. 830 (2012) [INSPIRE].
J. Donoghue, E. Golowich and B. Holstein, Dynamics of the Standard Model, Cambridge University Press (1994).
R. Machleidt and D.R. Entem, Chiral effective field theory and nuclear forces, Phys. Rept. 503 (2011) 1 [arXiv:1105.2919] [INSPIRE].
J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].
H. Leutwyler, On the foundations of chiral perturbation theory, Annals Phys. 235 (1994) 165 [hep-ph/9311274] [INSPIRE].
G. Ecker, Chiral perturbation theory, Prog. Part. Nucl. Phys. 35 (1995) 1 [hep-ph/9501357] [INSPIRE].
S. Scherer, Introduction to chiral perturbation theory, Adv. Nucl. Phys. 27 (2003) 277 [hep-ph/0210398] [INSPIRE].
S. Carignano, A. Mammarella and M. Mannarelli, Equation of state of imbalanced cold matter from chiral perturbation theory, Phys. Rev. D 93 (2016) 051503 [arXiv:1602.01317] [INSPIRE].
A.P. Balachandran, G. Marmo, B.S. Skagerstam and A. Stern, Classical Topology and Quantum States, World Scientific (1991) [https://doi.org/10.1142/1180].
G. Baym, B.L. Friman and G. Grinstein, Fluctuations and long range order in finite temperature pion condensates, Nucl. Phys. B 210 (1982) 193 [INSPIRE].
Y. Hidaka, K. Kamikado, T. Kanazawa and T. Noumi, Phonons, pions and quasi-long-range order in spatially modulated chiral condensates, Phys. Rev. D 92 (2015) 034003 [arXiv:1505.00848] [INSPIRE].
F. Canfora, Magnetized Baryonic layer and a novel BPS bound in the gauged-non-linear-sigma-model-Maxwell theory in (3+1)-dimensions through Hamilton-Jacobi equation, JHEP 11 (2023) 007 [arXiv:2309.03153] [INSPIRE].
K. Hattori, T. Kojo and N. Su, Mesons in strong magnetic fields: (I) General analyses, Nucl. Phys. A 951 (2016) 1 [arXiv:1512.07361] [INSPIRE].
K. Hattori and X.-G. Huang, Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions, Nucl. Sci. Tech. 28 (2017) 26 [arXiv:1609.00747] [INSPIRE].
H.-T. Ding et al., Chiral properties of (2+1)-flavor QCD in strong magnetic fields at zero temperature, Phys. Rev. D 104 (2021) 014505 [arXiv:2008.00493] [INSPIRE].
F. Canfora and H. Maeda, Hedgehog ansatz and its generalization for self-gravitating Skyrmions, Phys. Rev. D 87 (2013) 084049 [arXiv:1302.3232] [INSPIRE].
F. Canfora, F. Correa and J. Zanelli, Exact multisoliton solutions in the four-dimensional Skyrme model, Phys. Rev. D 90 (2014) 085002 [arXiv:1406.4136] [INSPIRE].
F. Canfora, M. Di Mauro, M.A. Kurkov and A. Naddeo, SU(N) multi-Skyrmions at Finite Volume, Eur. Phys. J. C 75 (2015) 443 [arXiv:1508.07055] [INSPIRE].
E. Ayon-Beato, F. Canfora and J. Zanelli, Analytic self-gravitating Skyrmions, cosmological bounces and AdS wormholes, Phys. Lett. B 752 (2016) 201 [arXiv:1509.02659] [INSPIRE].
E. Ayón-Beato et al., Analytic self-gravitating 4-Baryons, traversable NUT-AdS wormholes, flat space-time multi-Skyrmions at finite volume and a novel transition in the SU (3)-Skyrme model, Eur. Phys. J. C 80 (2020) 384 [arXiv:1909.00540] [INSPIRE].
L. Avilés, F. Canfora, N. Dimakis and D. Hidalgo, Analytic topologically nontrivial solutions of the (3+1)-dimensional U (1) gauged Skyrme model and extended duality, Phys. Rev. D 96 (2017) 125005 [arXiv:1711.07408] [INSPIRE].
F. Canfora et al., Analytic (3+1)-dimensional gauged Skyrmions, Heun, and Whittaker-Hill equations and resurgence, Phys. Rev. D 98 (2018) 085003 [arXiv:1809.10386] [INSPIRE].
F. Canfora et al., Infinite conformal symmetry and emergent chiral fields of topologically nontrivial configurations: From Yang-Mills-Higgs theory to the Skyrme model, Phys. Rev. D 106 (2022) 105016 [arXiv:2208.07925] [INSPIRE].
S.L. Cacciatori, F. Canfora and F. Muscolino, Pearcey integrals, Stokes lines and exact baryonic layers in the low energy limit of QCD, Nucl. Phys. B 1000 (2024) 116477 [arXiv:2402.07551] [INSPIRE].
A. Barducci, G. Pettini, L. Ravagli and R. Casalbuoni, Ladder QCD at finite isospin chemical potential, Phys. Lett. B 564 (2003) 217 [hep-ph/0304019] [INSPIRE].
M. Loewe, S. Mendizabal and J.C. Rojas, Skyrme model and isospin chemical potential, Phys. Lett. B 632 (2006) 512 [hep-ph/0508038] [INSPIRE].
J.A. Ponciano and N.N. Scoccola, Skyrmions in the presence of isospin chemical potential, Phys. Lett. B 659 (2008) 551 [arXiv:0706.0865] [INSPIRE].
X. Cao, H. Liu, D. Li and G. Ou, QCD phase diagram at finite isospin chemical potential and temperature in an IR-improved soft-wall AdS/QCD model, Chin. Phys. C 44 (2020) 083106 [arXiv:2001.02888] [INSPIRE].
S. Wang and Y. Yang, Abrikosov’s Vortices in the Critical Coupling, SIAM J. Math. Anal. 23 (1992) 1125.
C.H. Taubes, Arbitrary N: Vortex Solutions to the First Order Landau-Ginzburg Equations, Commun. Math. Phys. 72 (1980) 277 [INSPIRE].
A. Jaffe and C.H. Taubes, Vortices and Monopoles, Birkhauser, Boston (1980).
E.J. Weinberg, Index Calculations for the Fermion-Vortex System, Phys. Rev. D 24 (1981) 2669 [INSPIRE].
M. Mariño, Instantons and Large N : An Introduction to Non-Perturbative Methods in Quantum Field Theory, Cambridge University Press (2015) [https://doi.org/10.1017/CBO9781107705968] [INSPIRE].
L. Boeri et al., The 2021 room-temperature superconductivity roadmap, J. Phys. Condens. Matter 34 (2022) 183002.
R. Jackiw and P. Rossi, Zero Modes of the Vortex - Fermion System, Nucl. Phys. B 190 (1981) 681 [INSPIRE].
A.P. Balachandran, V.P. Nair, S.G. Rajeev and A. Stern, Soliton States in the QCD Effective Lagrangian, Phys. Rev. D 27 (1983) 1153 [Erratum ibid. 27 (1983) 2772] [INSPIRE].
A.P. Balachandran, V.P. Nair, S.G. Rajeev and A. Stern, Exotic Levels from Topology in the QCD Effective Lagrangian, Phys. Rev. Lett. 49 (1982) 1124 [Erratum ibid. 50 (1983) 1630] [INSPIRE].
S. Kahana, R. Perry and G. Ripka, Infinite coupling limit of a chiral field, Phys. Lett. B 163 (1985) 37 [INSPIRE].
S.B. Gudnason and M. Nitta, Modifying the pion mass in the loosely bound Skyrme model, Phys. Rev. D 94 (2016) 065018 [arXiv:1606.02981] [INSPIRE].
S.B. Gudnason, Loosening up the Skyrme model, Phys. Rev. D 93 (2016) 065048 [arXiv:1601.05024] [INSPIRE].
G.S. Adkins and C.R. Nappi, The Skyrme Model with Pion Masses, Nucl. Phys. B 233 (1984) 109 [INSPIRE].
V.B. Kopeliovich, B. Piette and W.J. Zakrzewski, Mass terms in the Skyrme model, Phys. Rev. D 73 (2006) 014006 [hep-th/0503127] [INSPIRE].
L. Marleau, Modifying the Skyrme model: Pion mass and higher derivatives, Phys. Rev. D 43 (1991) 885 [INSPIRE].
J.A. Lopez, C.O. Dorso and G.A. Frank, Properties of nuclear pastas, Front. Phys. (Beijing) 16 (2021) 24301 [arXiv:2007.07417] [INSPIRE].
C.J. Horowitz et al., Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars, Phys. Rev. Lett. 114 (2015) 031102 [arXiv:1410.2197] [INSPIRE].
D.K. Berry et al., “Parking-garage” structures in nuclear astrophysics and cellular biophysics, Phys. Rev. C 94 (2016) 055801 [arXiv:1509.00410] [INSPIRE].
C.O. Dorso, G.A. Frank and J.A. López, Phase transitions and symmetry energy in nuclear pasta, Nucl. Phys. A 978 (2018) 35 [arXiv:1803.08819] [INSPIRE].
A. da Silva Schneider, M.E. Caplan, D.K. Berry and C.J. Horowitz, Domains and defects in nuclear pasta, Phys. Rev. C 98 (2018) 055801 [arXiv:1807.00102] [INSPIRE].
M.E. Caplan, A.S. Schneider and C.J. Horowitz, Elasticity of Nuclear Pasta, Phys. Rev. Lett. 121 (2018) 132701 [arXiv:1807.02557] [INSPIRE].
R. Nandi and S. Schramm, Calculation of the transport coefficients of the nuclear pasta phase, J. Astrophys. Astron. 39 (2018) 40 [INSPIRE].
Z. Lin, M.E. Caplan, C.J. Horowitz and C. Lunardini, Fast neutrino cooling of nuclear pasta in neutron stars: molecular dynamics simulations, Phys. Rev. C 102 (2020) 045801 [arXiv:2006.04963] [INSPIRE].
C.O. Dorso, A. Strachan and G.A. Frank, The nucleonic thermal conductivity of “pastas” in neutron star matter, Nucl. Phys. A 1002 (2020) 122004 [arXiv:2005.09142] [INSPIRE].
C.J. Pethick, Z. Zhang and D.N. Kobyakov, Elastic properties of phases with nonspherical nuclei in dense matter, Phys. Rev. C 101 (2020) 055802 [arXiv:2003.13430] [INSPIRE].
G. Watanabe and T. Maruyama, Nuclear pasta in supernovae and neutron stars, [arXiv:1109.3511] [INSPIRE].
A. Schmitt, Chiral pasta: Mixed phases at the chiral phase transition, Phys. Rev. D 101 (2020) 074007 [arXiv:2002.01451] [INSPIRE].
N.S. Manton, A remark on the Scattering of BPS Monopoles, Phys. Lett. B 110 (1982) 54 [INSPIRE].
N.S. Manton, Monopole Interactions at Long Range, Phys. Lett. B 154 (1985) 397 [Erratum ibid. 157 (1985) 475] [INSPIRE].
N.S. Manton and S.M. Nasir, Volume of vortex moduli spaces, Commun. Math. Phys. 199 (1999) 591 [hep-th/9807017] [INSPIRE].
G.W. Gibbons and N.S. Manton, The moduli space metric for well separated BPS monopoles, Phys. Lett. B 356 (1995) 32 [hep-th/9506052] [INSPIRE].
T.M. Samols, Vortex scattering, Commun. Math. Phys. 145 (1992) 149 [INSPIRE].
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Sprimger (2013).
D. Kinderlehrer and G. Stampacchia, Variational Inequalities in RN : an Introduction to Variational Inequalities and Their Applications, Academic Press, New York (1980), pp. 7–22.
P. Pedregal, Functional Analysis, Sobolev Spaces, and Calculus of Variations, Springer (2024).
Acknowledgments
F.C. has been funded by FONDECYT Grant No. 1240048. M.L. has been funded by FONDECYT Iniciación No. 11241079.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2405.08082
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Canfora, F., Lagos, M. & Vera, A. Superconducting multi-vortices and a novel BPS bound in chiral perturbation theory. J. High Energ. Phys. 2024, 224 (2024). https://doi.org/10.1007/JHEP10(2024)224
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2024)224