Skip to main content

Advertisement

Log in

Go Green in Neuroradiology: towards reducing the environmental impact of its practice

  • Review
  • Published:
Neuroradiology Aims and scope Submit manuscript

This article has been updated

Abstract

Raising public awareness about the relevance of supporting sustainable practices is required owing to the phenomena of global warming caused by the rising production of greenhouse gases. The healthcare sector generates a relevant proportion of the total carbon emissions in developed countries, and radiology is estimated to be a major contributor to this carbon footprint. Neuroradiology markedly contributes to this negative environmental effect, as this radiological subspecialty generates a high proportion of diagnostic and interventional imaging procedures, the majority of them requiring high energy-intensive equipment. Therefore, neuroradiologists and neuroradiological departments are especially responsible for implementing decisions and initiatives able to reduce the unfavourable environmental effects of their activities, by focusing on four strategic pillars—reducing energy, water, and helium use; properly recycling and/or disposing of waste and residues (including contrast media); encouraging environmentally friendly behaviour; and reducing the effects of ionizing radiation on the environment. The purpose of this article is to alert neuroradiologists about their environmental responsibilities and to analyse the most productive strategic axes, goals, and lines of action that contribute to reducing the environmental impact associated with their professional activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 24 February 2024

    The author "Douraied Ben Salem" family name has been updated in XML for the correct citations.

References  

  1. Health Care Without Harm. Healthcare climate footprint report. 2019. https://noharmglobal.org/documents/health-care-climate-footprint-report. Accessed 6 Apr 2023 

  2. Eckelman MJ, Sherman J (2016) Environmental impacts of the U.S. health care system and effects on public health. PLOS ONE 11:e0157014

    Article  PubMed  PubMed Central  Google Scholar 

  3. Picano E, Mangia C, D’Andrea AJ (2022) Climate change, carbon dioxide emissions, and medical imaging contribution. J Clin Med 12:215

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lojo-Lendoiro S, Rovira À, Morales Santos Á (2023) Green Radiology: how to develop sustainable radiology. Radiología (Engl Ed). https://doi.org/10.1016/j.rx.2023.06.007.Articleinpress

    Article  PubMed  Google Scholar 

  5. European Commission. Buying green! A handbook on environmental public procurement. European Commission. Luxembourg; Ed Publications Office of the European Union: 2016. Consulted: 25–05–2023 Available: Buying-Green-Handbook-3rd-Edition.pdf (europa.eu)

  6. European Commission. EU GPP criteria for electrical and electronic equipment used in the health care sector. Luxemburgo; Ed Publicacions Office of the European Union: 2014. Consulted: 25–05–2023 Available: https://ec.europa.eu/environment/gpp/pdf/criteria/health/EN.pdf

  7. Public Services and Procurement Canada. Green Procurement Plan—Part A: Checklist. Ed PSPC CA: 2019. Consulted: 25–05–2023 Available: https://www.tpsgc-pwgsc.gc.ca/app-acq/ae-gp/npaea-ngppa-eng.html

  8. Liu B, Tong L, Liu Y, Guo Z (2022) Maintenance and management technology of medical imaging equipment based on deep learning. Contrast Media Mol Imaging 1:1–9

    Google Scholar 

  9. European Coordination Committee of the Radiological, Electromedical and Healthcare IT Industry (COCIR), Japan Industries Association of Radiological Systems (JIRA), Medical Imaging & Technology Alliance United States (MITA. Green Paper on Good Refurbishment practice for medical imaging equipment. 12 April 2018. Consulted: 21–03–2023 Available:https://www.cocir.org/fileadmin/6.1_Initiatives_Refurbishment/Good_Refurbishment_Practice_V2.pdf

  10. European Union. Council Directive 2013/59/EURATOM, of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionizing radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. OJEU no. 13, of January 17, 2014, pages 1 to 73.

  11. World Health Organization. Guidelines for health care equipment donations. Genève; Ed WHO: March 2000. Consulted: 21–03–2023 Available: https://apps.who.int/iris/bitstream/handle/10665/70806/WHO_ARA_97.3_eng.pdf?sequence=1&isAllowed=y

  12. Eckelman MJ, Huang K, Lagasse R, Senay E, Dubrow R, Sherman JD (2020) Health care pollution and public health damage in the United States: an update. Health Aff (Millwood) 39:2071–2079

    Article  PubMed  Google Scholar 

  13. Marwick TH, Buonocore J (2011) Environmental impact of cardiac imaging tests for the diagnosis of coronary artery disease. Heart 97:1128–1131

    Article  PubMed  Google Scholar 

  14. Martin M, Mohnke A, Lewis GM, Dunnick NR, Keoleian G, Maturen KE (2018) Environmental impacts of abdominal imaging: a pilot investigation. J Am Coll Radiol 15:1385–1393

    Article  PubMed  Google Scholar 

  15. Martin MF, Maturen KE (2020) On green radiology. Acad Radiol 27:1601–1602

    Article  PubMed  Google Scholar 

  16. Heye T, Knoerl R, Wehrle T et al (2020) The energy consumption of radiology: energy- and cost-saving opportunities for CT and MRI operation. Radiology 295:593–605

    Article  PubMed  Google Scholar 

  17. Vosshenrich J, Breit HC, Bach M, Merkle EM (2022) Economic aspects of low-field magnetic resonance imaging : acquisition, installation, and maintenance costs of 0.55 T systems. Radiologe 62:400–404

    Article  PubMed  PubMed Central  Google Scholar 

  18. Arnold TC, Freeman CW, Litt B, Stein JM (2023) Low-field MRI: clinical promise and challenges. J Magn Reson Imaging 57:25–44

    Article  PubMed  Google Scholar 

  19. Heiss R, Nagel AM, Laun FB, Uder M, Bickelhaupt S (2021) Low-field magnetic resonance imaging: a new generation of breakthrough technology in clinical imaging. Invest Radiol 56:726–733

    Article  PubMed  Google Scholar 

  20. Woolen SA, Kim CJ, Hernandez AM et al (2023) Radiology environmental impact: what is known and how can we improve? Acad Radiol 30:625–630

    Article  PubMed  Google Scholar 

  21. Hainc N, Brantner P, Zaehringer C, Hohmann J (2020) “Green fingerprint” project: evaluation of the power consumption of reporting stations in a radiology department. Acad Radiol 27:1594–1600

    Article  PubMed  Google Scholar 

  22. Woolen SA, Becker AE, Martin AJ et al (2023) Ecodesign and operational strategies to reduce the carbon footprint of MRI for energy cost savings. Radiology 307:e230441

    Article  PubMed  Google Scholar 

  23. https://www.acr.org/Clinical-Resources/ACR-Appropriateness-Criteria. Accessed 6 Apr 2023

  24. D’Alessandro D, Tedesco P, Rebecchi A, Capolongo S (2016) Water use and water saving in Italian hospitals. A preliminary investigation. Ann Ist Super Sanita 52:56–62

    PubMed  Google Scholar 

  25. Health Technical Memorandum 07–04: Water management and water efficiency—best practice advice for the healthcare sector (https://www.england.nhs.uk/publication/water-management-and-water-efficiency-htm-07-04/ ). Accessed 6 Apr 2023

  26. Jouhara H, Khordehgah N, Almahmoud S, Delpech B, Chauhan A, Tassou SA (2018) Waste heat recovery technologies and applications. Therm Sci Eng Prog 6:268–289

    Article  Google Scholar 

  27. Hidalgo-Tobon SS (2010) Theory of gradient coil design methods for magnetic resonance imaging. Concepts Magn Reson Part A 36A:223–242

    Article  Google Scholar 

  28. Stall NM, Kagoma YK, Bondy JN, Naudie D (2013) Surgical waste audit of 5 total knee arthroplasties. Can J Surg 56:97–102

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hutchins DCJ, White SM (2009) Coming round to recycling. BMJ 338:b609

    Article  PubMed  Google Scholar 

  30. Sumner C, Ikuta I, Garg T et al (2023) Approaches to greening radiology. Acad Radiol 30:528–535

    Article  PubMed  Google Scholar 

  31. Chawla A, Chinchure D, Marchinkow LO, Munk PL, Peh WCG (2017) Greening the radiology department: not a big mountain to climb. CARJ 68:234–236

    PubMed  Google Scholar 

  32. Brown M, Schoen JH, Gross J, Omary RA, Hanneman K (2023) Climate change and radiology: impetus for change and a toolkit for action. Radiology 307:e230229

    Article  PubMed  Google Scholar 

  33. Thomas A (2012) Medical imaging: why helium prevails. In: Nuttall WJ, Clarke RH, Glowacki BA (eds) The future of helium as a natural resource. Routledge, London, UK

    Google Scholar 

  34. Nuttall WJ, Clarke RH, Glowacki BA (2012) Resources: stop squandering helium. Nature 485:573–575

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Mohr S, Ward J (2014) Helium production and possible projection. Minerals 4:130–144

    Article  ADS  Google Scholar 

  36. Brünjes R, Hofmann T (2020) Anthropogenic gadolinium in freshwater and drinking water systems. Water Res 182:115966

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dekker HM, Stroomberg GJ, Prokop M (2022) Tackling the increasing contamination of the water supply by iodinated contrast media. Insights Imaging 13:30

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kovalova L, Siegrist H, Singer H, Wittmer A, McArdell CS (2012) Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environ Sci Technol 46:1536–1545

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Sengar A, Vijayanandan A (2021) Comprehensive review on iodinated X-ray contrast media: complete fate, occurrence, and formation of disinfection byproducts. Sci Total Environ 769:144846

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Jomaah R, Barrat JA, Tripier R et al (2023) Iodine footprint: moving towards environmental responsibility. J Neuroradiol 50:1–2

    Article  PubMed  Google Scholar 

  41. Moller P, Dulski P, Bau M, Knappe A, Pekdeger A, Sommer-von JC (2000) Anthropogenic gadolinium as a conservative tracer in hydrology. J Geochem Explor 69–70:409–414

    Article  Google Scholar 

  42. Verplanck PL, Taylor HE, Nordstrom DK, Barber LB (2005) Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent, Boulder Creek. Colorado Environ Sci Technol 39:6923–6929

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Kulaksız S, Bau M (2007) Contrasting behaviour of anthropogenic gadolinium and natural rare earth elements in estuaries and the gadolinium input into the North Sea. Earth Planet Sci Lett 260:361–371

    Article  ADS  Google Scholar 

  44. Pereto C, Lerat-Hardy A, Baudrimont M, Coynel A (2023) European fluxes of medical gadolinium to the ocean: a model based on healthcare databases. Envir International 173:107868

    Article  CAS  Google Scholar 

  45. Chazot A, Barrat J-A, Gaha M, Jomaah R, Ognard J, Ben SD (2020) Brain MRI make up the bulk of the gadolinium footprint in medical imaging. J Neuroradiol 47:259–265

    Article  PubMed  Google Scholar 

  46. Balzer T. (2017) Presence of gadolinium (Gd) in the brain and body. Presentation to the Medical Imaging Drugs Advisory Committee, FDA. Silver Spring, MD: U.S. Food and Drug Administration.

  47. Rovira A, Doniselli FM, Auger C et al (2023) Use of gadolinium‑based contrast agents in multiple sclerosis: a review by the ESMRMB‑GREC and ESNR Multiple Sclerosis Working Group. Eur Radiol. https://doi.org/10.1007/s00330-023-10151-y

  48. Mallio CA, Radbruch A, Deike-Hofmann K et al (2023) Artificial Intelligence to reduce or eliminate the need for gadolinium-based contrast agent in brain and cardiac MRI: a literature review. Invest Radiol 58:746–753

  49. Bendszus M, Roberts D, Kolumban B et al (2020) Dose finding study of gadopiclenol, a new macrocyclic contrast agent, in MRI of central nervous system. Invest Radiol 55:129–137

    Article  CAS  PubMed  Google Scholar 

  50. Loevner LA, Kolumban B, Hutoczki G et al (2023) Efficacy and safety of gadopiclenol for contrast-enhanced MRI of the central nervous system: the PICTURE randomized clinical trial. Invest Radiol 58:307–313

    Article  CAS  PubMed  Google Scholar 

  51. Zanardo M, Cozzi A, Cardani R et al (2023) Reducing contrast agent residuals in hospital wastewater: the GREENWATER study protocol. Eur Radiol Exp 7:27

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kovacsik H, Luciani A, Ben Salem D et al (2022) Vous avez dit «green radiology»? J d’Imagerie Diagnostique et Interventionnelle 5:154–156

    Article  Google Scholar 

  53. Jomaah R, Barrat JA, Tripier R, Ognard J, Ammari S, Ben SD (2023) Iodine footprint: moving towards environmental responsibility. J Neuroradiol 50:1–2

    Article  PubMed  Google Scholar 

  54. Zanardo M, Cozzi A, Cardani R et al (2023) Reducing contrast agent residuals in hospital wastewater: the GREENWATER study protocol. Eur Radiol Exp 7:27

    Article  PubMed  PubMed Central  Google Scholar 

  55. Morales Santos Á, Del Cura Rodríguez JL, Antúnez LN (2023) Teleradiology: good practice guide. Radiologia (Engl Ed) 65:133–148

    Article  CAS  PubMed  Google Scholar 

  56. Purohit A, Smith J, Hibble A (2021) Does telemedicine reduce the carbon footprint of healthcare? A systematic review. Future Healthc J 8:e85–e91

    Article  PubMed  PubMed Central  Google Scholar 

  57. Recht MP (2023) Work from home in academic radiology departments: advantages, disadvantages and strategies for the future. Acad Radiol 30:585–589

    Article  PubMed  Google Scholar 

  58. Sumner C, Ikuta I, Garg T et al (2023) Approaches to greening radiology. Acad Radiol 30:528–535

    Article  PubMed  Google Scholar 

  59. Yakar D, Kwee TC (2020) Carbon footprint of the RSNA annual meeting. Carbon footprint of the RSNA annual meeting. Eur J Radiol 125:108869

    Article  PubMed  Google Scholar 

  60. Zotova O, Pétrin-Desrosiers C, Gopfert A, Van Hove M (2020) Carbon-neutral medical conferences should be the norm. Lancet Planet Health 4:48–50

    Article  Google Scholar 

  61. Chua A, Amin R, Zhang J (2021) The environmental impact of interventional radiology: an evaluation of greenhouse gas emissions from an academic interventional radiology practice. J Vasc Interv Radiol 32:907–15

    Article  PubMed  Google Scholar 

  62. Wyssusek KH, Keys MT, van Zundert AA (2019) Operating room greening initiatives—the old, the new and the way forward: a narrative review. Waste Manag Res 37:3–19

    Article  PubMed  Google Scholar 

  63. Shum PL, Kok HK, Maingard J et al (2020) Environmental sustainability in neurointerventional procedures: a waste audit. J Neurointerventional Surg 12:1053–1057

    Article  Google Scholar 

  64. Tieszen ME, Gruenberg JC (1992) A quantitative, qualitative, and critical assessment of surgical waste. Surgeons venture through the trash can. JAMA 267:2765–2768

    Article  CAS  PubMed  Google Scholar 

  65. McGain E, Hensel SA, Story DA (2010) An audit of potentially recyclable waste from anaesthetic practice. Anaesth Intensive Care 38:538–544

    Article  CAS  PubMed  Google Scholar 

  66. Kagoma Y, Stall N, Rubinstein E, Naudie D (2012) People, planet and profits: the case of greening operating rooms. CMAJ 184:1905–1911

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wyssusek KH, Foong WM, Steel C, Gillespie BM (2016) The gold in garbage: implementing a waste segregation and recycling initiative. AORN J 103:316.e1–8

    Article  PubMed  Google Scholar 

  68. Southorn T, Norrish A, Gardner K, Baxandall R (2013) Reducing the carbon footprint of the operating theatre: a multicentre quality improvement report. J Perioper Pract 23:144–146

    CAS  PubMed  Google Scholar 

  69. Lee RJ, Mears SC (2012) Greening of orthopedic surgery. Orthopedics 35:e940–e944

    Article  PubMed  Google Scholar 

  70. Shum PL, Kok HK, Maingard J et al (2022) Sustainability in Interventional radiology: are we doing enough to save the environment? CVIR Endovascular 5:60

    Article  PubMed  PubMed Central  Google Scholar 

  71. Baerlocher MO, Kennedy SA, Ward TJ et al (2017) Society of interventional radiology: resource and environment recommended standards for IR. J Vasc Interv Radiol 28:513–516

    Article  PubMed  Google Scholar 

  72. University of California Health. University of California—policy on sustainable practices: report 2002. Consulted: 06–04–2023. Available: https://policy.ucop.edu/doc/3100155/SustainablePractices

  73. Global Green and Healthy Hospitals (GGHH). Act together for environmental health. Consulted: 06–04–2023. Available:https://greenhospitals.org/. Accessed 6 Apr 2023

  74. Partnerships for Action on Climate Change and Health. World Health Organization (WHO). Consulted: 06-April-2023. Available: https://www.who.int/teams/environment-climate-change-and-health/climate-change-and-health/advocacy-partnerships/partnerships-for-action-on-climate-change-and-health

  75. Operational framework for building climate resilient and low carbon health systems. World Health Organization (WHO) 2023. Consulted: 09-November-2023. Available: https://www.who.int/publications-detail-redirect/9789240081888

  76. European Society of Radiology (ESR). Green radiology program of the European Society of Radiology (ESR). Viena. Consulted: 06–04–2023 Available: https://connect.myesr.org/?esrc_course=the-green-radiology-department.

  77. The International Society of Radiology (ISR). Quality and Safety. ISR Quality and Safety Alliance (ISRQSA). Reston. Ed ISR. Consulted: 06–04–2023. Available: https://www.isradiology.org/quality

  78. Le Livre Blanc Radiologie et Écoresponsabilité. Sur la voie de la Green Radiology. Société Française de Radiologie et d’Imagerie Médicale. Décembre 2021 – Paris. Consulted: 06–04–2023. Available: https://www.radiologie.fr/sites/www.radiologie.fr/files/medias/documents/Livret%20blanc%20-%20version%20web%2010%20dec%202021_.pdf

  79. https://megadore.org/. Accessed 6 Apr 2023

  80. https://radiology.bayer.es/recontrast. Accessed 6 Apr 2023

  81. https://www.gehealthcare.co.uk/insights/article/recycling-iodine-how-hospitals-are-keeping-contrast-media-in-the-circular-economy. Accessed 6 Apr 2023

  82. https://www.guerbet.com/fr/notre-groupe/notre-responsabilite. Accessed 6 Apr 2023

  83. Beer M, Schuler J, Kraus E et al (2023) Discharge of iodine-containing contrast media into the environment—problem analysis and implementation of measures to reduce discharge by means of separation toilets—experience from a pilot project. Rofo 195:1122–1127

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Àlex Rovira.

Ethics declarations

Conflict of interest

• Àlex Rovira has received speaker honoraria from Bayer and Bracco. He is member of the ESMRMB-GREC Working Group whose yearly meetings have received unconditional support from Bayer Healthcare, Bracco Imaging, GE HealthCare, and Guerbet.

• Douraied Ben Salem is chief editor of Journal of Neuroradiology and head of the industrial* university** chair “MEGADORE” (MEdical GADOlinium REcycling).* Guerbet, Bracco, Imadis, Crédit Mutuel Arkea;**UBO Foundation (Université de Bretagne Occidentale)

• Carlo Cosimo Quattrocchi has signed speaker contracts with Bayer Healthcare, Bracco Imaging, and Guerbet. He is co-chair of the ESMRMB-GREC Working Group whose yearly meetings have received unconditional support from Bayer Healthcare, Bracco Imaging, GE HealthCare, and Guerbet. He is member of the ESUR-CMSC whose 2-yearly meetings have received support from Bayer Healthcare, Bracco Imaging, GE HealthCare, and Guerbet.

• The following authors have no disclosures related to the content of this article: Ana Geraldo, Sarah Cappelle, Anna del Poggio, Sirio Cocozza, Isil Saatci, Dora Zlatareva, Sara Lojo, Ángel Morales, and Tarek Yousry.

Ethics approval (include appropriate approvals or waivers)

Not required.

Informed consent (include appropriate statements)

Not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rovira, À., Ben Salem, D., Geraldo, A.F. et al. Go Green in Neuroradiology: towards reducing the environmental impact of its practice. Neuroradiology 66, 463–476 (2024). https://doi.org/10.1007/s00234-024-03305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-024-03305-2

Keywords

Navigation