Abstract
Microsatellites are short tandem DNA repeats, ubiquitous in genomes. They are believed to be under selection pressure, considering their high distribution and abundance beyond chance or random accumulation. However, limited analysis of microsatellites in single taxonomic groups makes it challenging to understand their evolutionary significance across taxonomic boundaries. Despite abundant genomic information, microsatellites have been studied in limited contexts and within a few species, warranting an unbiased examination of their genome-wide distribution in distinct versus closely related-clades. Large-scale comparisons have revealed relevant trends, especially in vertebrates. Here, “MicrosatNavigator”, a new tool that allows quick and reliable investigation of perfect microsatellites in DNA sequences, was developed. This tool can identify microsatellites across the entire genome sequences. Using this tool, microsatellite repeat motifs were identified in the genome sequences of 186 vertebrates. A significant positive correlation was noted between the abundance, density, length, and GC bias of microsatellites and specific lineages. The (AC)n motif is the most prevalent in vertebrate genomes, showing distinct patterns in closely related species. Longer microsatellites were observed on sex chromosomes in birds and mammals but not on autosomes. Microsatellites on sex chromosomes of non-fish vertebrates have the lowest GC content, whereas high-GC microsatellites (≥ 50 M% GC) are preferred in bony and cartilaginous fishes. Thus, similar selective forces and mutational processes may constrain GC-rich microsatellites to different clades. These findings should facilitate investigations into the roles of microsatellites in sex chromosome differentiation and provide candidate microsatellites for functional analysis across the vertebrate evolutionary spectrum.




Similar content being viewed by others
Data availability
The full dataset and metadata from this publication are available from the Dryad Digital Repository. Dataset, https://datadryad.org/stash/share/S15Z3AqzS8sXqrlUzi9ts2w_RezgFklBJCXRHcs0u2o (accessed on 13 April 2023).
Abbreviations
- ANOVA:
-
Analysis of variance
- Bkm:
-
Banded krait minor-satellite repeats
- chrRD:
-
Chromosome-wide relative density
- CS:
-
Cuckoo-search
- DE:
-
Differential evolution
- EMD:
-
Exact microsatellite discovery
- ENA:
-
European Nucleotide Archive
- FISH:
-
Fluorescence in situ hybridization
- GA:
-
Genetic algorithm
- GC:
-
Guanine-cytosine
- gcRA:
-
GC content category of relative abundance
- gRD:
-
Genome-wide relative density
- NCBI:
-
National Center for Biotechnology Information
- NGS:
-
Next-generation sequencing
- PMP:
-
Panted (l, d) motif problem
- PSWM:
-
Position-specific weight matrix
- RA:
-
Relative abundance
- RDfd:
-
Fold-difference in relative density
- rDNA:
-
Ribosomal DNA
- SSR:
-
Simple sequence repeat
- TE:
-
Transposable elements
- TFBS:
-
Transcription factor binding site
- TSV:
-
Tab-separated values
- WGS:
-
Whole-genome sequencing
References
Adams RH, Blackmon H, Reyes-Velasco J, Schield DR, Card DC, Andrew AL, Waynewood N, Castoe TA (2016) Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution. Genome 59:295–310. https://doi.org/10.1139/gen-2015-0124
Ahmad SF, Singchat W, Jehangir M, Panthum T, Srikulnath K (2020) Consequence of paradigm shift with repeat landscapes in reptiles: powerful facilitators of chromosomal rearrangements for diversity and evolution. Genes 11:827. https://doi.org/10.3390/genes11070827
Andrew AM (2004) Perl programming for biologists. Kybernetes 33:1335–1336. https://doi.org/10.1108/03684920410545333
Augstenová B, Mazzoleni S, Kratochvíl L, Rovatsos M (2018) Evolutionary dynamics of the W chromosome in caenophidian snakes. Genes 9:5. https://doi.org/10.3390/genes9010005
Avvaru AK, Sowpati DT, Mishra RK (2017) PERF: an exhaustive algorithm for ultra-fast and efficient identification of microsatellites from large DNA sequences. Bioinformatics 34:943–948. https://doi.org/10.1093/bioinformatics/btx721
Bachtrog D (2006) A dynamic view of sex chromosome evolution. Curr Opin Genet Dev 16:578–585. https://doi.org/10.1016/j.gde.2006.10.007
Bachtrog D (2013) Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet 14:113–124. https://doi.org/10.1038/nrg3366
Bachtrog B, Charlesworth B (2000) Reduced levels of microsatellite variability on the neo-Y chromosome of Drosophila miranda. Curr Biol 10:1025–1031. https://doi.org/10.1016/S0960-9822(00)00656-4
Bachtrog D, Kirkpatrick M, Mank JE, McDaniel SF, Pires JC, Rice WR, Valenzuela N (2011) Are all sex chromosomes created equal? Trends Genet 27:350–357. https://doi.org/10.1016/j.tig.2011.05.005
Bagshaw ATM (2017) Functional mechanisms of microsatellite DNA in eukaryotic genomes. Genome Biol Evol 9:2428–2443. https://doi.org/10.1093/gbe/evx164
Bailey TL (2011) DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27:1653–1659. https://doi.org/10.1093/bioinformatics/btr261
Beier S, Thiel T, Münch T, Scholz U, Mascher M (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33:2583–2585. https://doi.org/10.1093/bioinformatics/btx198
Benet A, Mollà G, Azorín F (2000) d(GA· TC)n microsatellite DNA sequences enhance homologous DNA recombination in SV40 minichromosomes. Nucleic Acids Res 28:33. https://doi.org/10.1093/nar/28.23.4617
Bhargava A, Fuentes FF (2010) Mutational dynamics of microsatellites. Mol Biotechnol 44:250–266. https://doi.org/10.1007/s12033-009-9230-4
Bussemaker HJ, Li H, Siggia ED (2000) Building a dictionary for genomes: identification of presumptive regulatory sites by statistical analysis. Proc Natl Acad Sci U S A 97:10096–10100. https://doi.org/10.1073/pnas.18026539
Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128. https://doi.org/10.1038/sj.hdy.6800697
Chen X, Guo L, Fan Z, Jiang T (2008) W-AlignACE: an improved Gibbs sampling algorithm based on more accurate position weight matrices learned from sequence and gene expression/ChIP-chip data. Bioinformatics 24:1121–1128. https://doi.org/10.1093/bioinformatics/btn088
Cioffi MB, Kejnovsky E, Bertollo LAC (2011) The chromosomal distribution of microsatellite repeats in the genome of the wolf fish Hoplias malabaricus, focusing on the sex chromosomes. Cytogenet Genome Res 132:289–296. https://doi.org/10.1159/000322058
Deakin JE, Potter S, O’Neill R, Ruiz-Herrera A, Cioffi MB, Eldridge MDB, Fukui K, Graves JAM, Griffin DK, Grutzner F, Kratochvíl L, Miura I, Rovatsos M, Srikulnath K, Wapstra E, Ezaz T (2019) Chromosomics: bridging the gap between genomes and chromosomes. Genes 10:627. https://doi.org/10.3390/genes10080627
Devulder G, Perrière G, Baty F, Flandrois JP (2003) BIBI, a bioinformatics bacterial identification tool. J Clin Microbiol 41:1785–1787. https://doi.org/10.1128/JCM.41.4.1785-1787.2003
Du L, Zhang C, Liu C, Zhang X, Yue B (2018) Krait: an ultrafast tool for genome-wide survey of microsatellites and primer design. Bioinformatics 34:681–683. https://doi.org/10.1093/bioinformatics/btx665
Ezaz T, Deakin JE (2014) Repetitive sequence and sex chromosome evolution in vertebrates. Adv Evol Biol 2014:1–9. https://doi.org/10.1155/2014/104683
Ezaz T, Sarre SD, O’Meally D, Graves JAM, Georges A (2009) Sex chromosome evolution in lizards: independent origins and rapid transitions. Cytogenet Genome Res 127:249–260. https://doi.org/10.1159/000300507
Ezaz T, Srikulnath K, Graves JAM (2017) Origin of amniote sex chromosomes: an ancestral super-sex chromosome, or common requirements? J Hered 108:94–105. https://doi.org/10.1093/jhered/esw053
Faircloth BC (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94. https://doi.org/10.1111/j.1471-8286.2007.01884.x
Furman BLS, Metzger DCH, Darolti I, Wright AE, Sandkam BA, Almeida P, Shu JJ, Mank JE (2020) Sex chromosome evolution: so many exceptions to the rules. Genome Biol Evol 12:750–763. https://doi.org/10.1093/gbe/evaa081
Gamble T, Zarkower D (2014) Identification of sex-specific molecular markers using restriction site-associated DNA sequencing. Mol Ecol Resour 14:902–913. https://doi.org/10.1111/1755-0998.12237
Georgakopoulos-Soares I, Chan CSY, Ahituv N, Hemberg M (2020) High-throughput techniques enable advances in the roles of DNA and RNA secondary structures in transcriptional and post-transcriptional gene regulation. Genome Biol 23:159. https://doi.org/10.1186/s13059-022-02733-8
Goldreich O (2010) P, NP, and NP-Completeness: the basics of computational complexity. Cambridge University Press
Graves JAM (2015) Evolution of vertebrate sex chromosomes and dosage compensation. Nat Rev Genet 17:33–46. https://doi.org/10.1038/nrg.2015.2
Grover A, Aishwarya V, Sharma PC (2007) Biased distribution of microsatellite motifs in the rice genome. Mol Genet Genom 277:469–480. https://doi.org/10.1007/s00438-006-0204-y
Guides GH (2014) Making your code citable. https://guides.github.com/activities/citable-code. Accessed 11 Apr 2023
Hashim FA, Mabrouk MS, Al-Atabany W (2019) Review of different sequence motif finding algorithms. Avicenna J Med Biotechnol 11:130
Helleu Q, Gérard P, Dubruille R, Ogereau D, Prud’homme B, Loppin B, Montchamp-Moreau C (2016) Rapid evolution of a Y-chromosome heterochromatin protein underlies sex chromosome meiotic drive. Proc Natl Acad Sci U S A 113:4110–4115. https://doi.org/10.1073/pnas.1519332113
Houssein EH, Saad MR, Hashim FA, Shaban H, Hassaballah M (2020) Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell 94:103731. https://doi.org/10.1016/j.engappai.2020.103731
Jia C, Carson MB, Wang Y, Lin Y, Lu H (2014) A new exhaustive method and strategy for finding motifs in ChIP-enriched regions. PLoS One 9:e86044. https://doi.org/10.1371/journal.pone.0086044
Jobling MA, Tyler-Smith C (2017) Human Y-chromosome variation in the genome-sequencing era. Nat Rev Genet 18:485–497. https://doi.org/10.1038/nrg.2017.36
Jones NC, Pevzner PA (2004) An introduction to bioinformatics algorithms. MIT press, Cambridge, MA, USA
Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334. https://doi.org/10.1007/s10681-010-0286-9
Kejnovský E, Hawkins JS, Feschotte C (2012) Plant transposable elements: biology and evolution. In: Wendel JF (ed) Molecular biology and evolution of the plant genome. Springer Verlag, Vienna/New York, pp 17–34
Kejnovský E, Michalovova M, Steflova P, Kejnovska I, Manzano S, Hobza R, Kubat Z, Kovarik J, Jamilena M, Vyskot B (2013) Expansion of microsatellites on evolutionary young Y chromosome. PLoS One 8:e45519. https://doi.org/10.1371/journal.pone.0045519
Kofler R, Schlötterer C, Lelley T (2007) SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23:1683–1685. https://doi.org/10.1093/bioinformatics/btm157
Kolpakov R, Kucherova G (2003) Finding approximate repetitions under Hamming distance. Theor Comput Sci 303:135–156. https://doi.org/10.1016/S0304-3975(02)00448-6
Kratochvíl L, Vukić J, Červenka J, Kubička L, Pokorná MJ, Kukačková D, Rovatsos M, Piálek L (2020) Mixed-sex offspring produced via cryptic parthenogenesis in a lizard. Mol Ecol 29:4118–4127. https://doi.org/10.1111/mec.15617
Krishnan J, Athar F, Rani TS, Mishra RK (2017) Simple sequence repeats showing ‘length preference’ have regulatory functions in humans. Gene 628:156–161. https://doi.org/10.1016/j.gene.2017.07.022
Kumar S, Suleski M, Craig JM, Kasprowicz AE, Sanderford M, Li M, Stecher G, Hedges B (2022) TimeTree 5: an expanded resource for species divergence times. Mol Biol Evol 39:msac174. https://doi.org/10.1093/molbev/msac174
Lam HYK, Clark MJ, Chen R, Chen R, Natsoulis G, O’Huallachain M, Dewey FE, Habegger L, Ashley EA, Gerstein MB, Butte AJ, Ji HP, Snyder M (2012) Performance comparison of whole-genome sequencing platforms. Nat Biotechnol 30:78–82. https://doi.org/10.1038/nbt.2065
Lim KG, Kwoh CK, Hsu LY, Wirawan A (2013) Review of tandem repeat search tools: a systematic approach to evaluating algorithmic performance. Brief Bioinformatics 14:67–81. https://doi.org/10.1093/bib/bbs023
Lin Y, Dent SY, Wilson JH, Wells RD, Napierala M (2010) R loops stimulate genetic instability of CTG.CAG repeats. Proc Natl Acad Sci U S A 107:692–697
Linnaeus C (1758) Systema Naturae, sive regina tria naturae systematice proposita por classes, ordines, genera, species cum characteribus differentiis synonymis, locis, 10th ed. L. Salvi, Holmiae, Sweden
Liu XS, Brutlag DL, Liu JS (2002) An algorithm for finding protein–DNA binding sites with applications to chromatin- immunoprecipitation microarray experiments. Nat Biotechnol 20:835–839. https://doi.org/10.1038/nbt717
Liu X, Brutlag DL, Liu JS (2000) BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. In: Biocomputing 2001. World Scientific, 127–138
Lu X, Wu C (2011) Sex, sex chromosomes and gene expression. BMC Biol 9:30. https://doi.org/10.1186/1741-7007-9-30
Machanick P, Bailey TL (2011) MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27:1696–1697. https://doi.org/10.1093/bioinformatics/btr189
Majewski J, Ott J (2000) GT repeats are associated with recombination on human chromosome 22. Genome Res 10:1108–1114. https://doi.org/10.1101/gr.10.8.1108
Matsubara K, Sarre SD, Georges A, Matsuda Y, Graves JAM, Ezaz T (2014) Highly differentiated ZW sex microchromosomes in the Australian varanus species evolved through rapid amplification of repetitive sequences. PLoS One 9:e95226. https://doi.org/10.1371/journal.pone.0095226
Matsubara K, Gamble T, Matsuda Y, Zarkower D, Sarre SD, Georges A, Graves JAM, Ezaz T (2014b) Non-homologous sex chromosomes in two geckos (Gekkonidae: Gekkota) with female heterogamety. Cytogenet Genome Res 143:251–258. https://doi.org/10.1159/000366172
Matsubara K, Uno Y, Srikulnath K, Matsuda Y, Miller E, Olsson M (2015) No interstitial telomeres on autosomes but remarkable amplification of telomeric repeats on the W sex chromosome in the sand lizard (Lacerta agilis). J Hered 106:753–757. https://doi.org/10.1093/jhered/esv083
Matsubara K, O’Meally D, Azad B, Georges A, Sarre SD, Graves JAM, Matsuda Y, Ezaz T (2016) Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma 125:111–123. https://doi.org/10.1007/s00412-015-0531-z
Matsubara K, O’Meally D, Sarre SD, Georges A, Srikulnath K, Ezaz T (2019) ZW sex chromosomes in Australian dragon lizards (Agamidae) originated from a combination of duplication and translocation in the nucleolar organising region. Genes 10:861. https://doi.org/10.3390/genes10110861
Nakagama H, Higuchi K, Tanaka E, Tsuchiya N, Nakashima K, Katahira M, Fukuda H (2006) Mechanisms for maintenance of G-rich short tandem repeats capable of adopting G4 DNA structures. Mutat Res 598:120–131. https://doi.org/10.1016/j.mrfmmm.2006.01.014
Nishida-Umehara C, Tsuda Y, Ishijima J, Ando J, Fujiwara A, Matsuda Y, Griffin DK (2007) The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds. Chromosome Res 15:721–734. https://doi.org/10.1007/s10577-007-1157-7
Nuttall T (1841) Descriptions of new Species and Genera of Plants. Trans Am Philos Soc II 400:283–453. https://doi.org/10.2307/1005312
O’Meally D, Patel HR, Stiglec R, Sarre SD, Georges A, Graves JAM, Ezaz T (2010) Non-homologous sex chromosomes of birds and snakes share repetitive sequences. Chromosome Res 18:787–800. https://doi.org/10.1007/s10577-010-9152-9
O’Meally D, Ezaz T, Georges A, Sarre SD, Graves JAM (2012) Are some chromosomes particularly good at sex? Insights from amniotes. Chromosome Res 20:7–19. https://doi.org/10.1007/s10577-011-9266-8
Oliveira EJ, Pádua JG, Zucchi MI, Vencovsky R, Vieira MLC (2006) Origin, evolution and genome distribution of microsatellites. Genet Mol Biol 29:294–307. https://doi.org/10.1590/S1415-47572006000200018
Palmer D, Rogers T, Dean R, Wright A (2019) How to identify sex chromosomes and their turnover. Mol Ecol 28:4709–4724. https://doi.org/10.1111/mec.15245
Panthum T, Jaisamut K, Singchat W, Ahmad SF, Kongkaew L, Wongloet W, Dokkaew S, Kraichak E, Muangmai N, Duengkae P, Srikulnath K (2022) Something fishy about Siamese fighting fish (Betta splendens) sex: polygenic sex determination or a newly emerged sex-determining region? Cells 11:1764. https://doi.org/10.3390/cells11111764
Park ST, Kim J (2016) Trends in next-generation sequencing and a new era for whole genome sequencing. Int Neurourol J 20(Suppl 2):S76-83. https://doi.org/10.5213/inj.1632742.371
Pavesi G, Mereghetti P, Mauri G, Pesole G (2004) Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res 32:W199–W203. https://doi.org/10.1093/nar/gkh465
Perry BW, Card DC, McGlothlin JW, Pasquesi GIM et al (2018) Molecular adaptations for sensing and prey and insight into amniote genome diversity from the garter snake genome. Genome Biol Evol 10:2110–2129. https://doi.org/10.1093/gbe/evy157
Pickett BD, Miller JB, Ridge PG (2017) Kmer-SSR: a fast and exhaustive SSR search algorithm. Bioinformatics 33:3922–3928. https://doi.org/10.1093/bioinformatics/btx538
Pokorná M, Kratochvíl L, Kejnovský E (2011) Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox). BMC Genet 12:90. https://doi.org/10.1186/1471-2156-12-90
Qi WH, Jiang XM, Yan CC, Zhang WQ, Xiao GS, Yue BS, Zhou CQ (2018) Distribution patterns and variation analysis of simple sequence repeats in different genomic regions of bovid genomes. Sci Rep 8:14407. https://doi.org/10.1038/s41598-018-32286-5
Qi WH, Lu T, Zheng CL, Jiang XM, Jie H, Zhang XY, Yue BS, Zhao GJ (2020) Distribution patterns of microsatellites and development of its marker in different genomic regions of forest musk deer genome based on high throughput sequencing. Aging 12:4445. https://doi.org/10.18632/aging.102895
Quah KH, Quek C (2007) MCES: a novel Monte Carlo evaluative selection approach for objective feature selections. IEEE Trans Neural Netw 18:431–448. https://doi.org/10.1109/TNN.2006.887555
Quang D, Xie X (2014) EXTREME: an online EM algorithm for motif discovery. Bioinformatics 30:1667–1673. https://doi.org/10.1093/bioinformatics/btu093
Reid JE, Wernisch L (2011) STEME: efficient EM to find motifs in large data sets. Nucleic Acids Res 39:e126–e126. https://doi.org/10.1093/nar/gkr574
Romero AV (2010) VirtualBox 3.1: Beginner's Guide. Packt Publishing Ltd
Rovatsos M, Altmanová M, Pokorná M, Augstenová B, Kratochvíl L (2017) Cytogenetics of the Javan file snake (Acrochordus javanicus) and the evolution of snake sex chromosomes. J Zool Syst Evol Res 56:117–125. https://doi.org/10.1111/jzs.12180
Satyanarayana K, Strominger JL (1992) DNA sequences near a meiotic recombinational breakpoint within the human HLA-DQ region. Immunogenetics 35:235–240. https://doi.org/10.1007/BF00166828
Schartl M, Schmid M, Nanda I (2016) Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs. Chromosoma 125:553–571. https://doi.org/10.1007/s00412-015-0569-y
Seabold S, Perktold J (2010) Statsmodels: econometric and statistical modeling with python. In: Proceedings of the 9th Python in science conference, Scipy, Austin, TX, USA, pp 57–61
Sember A, Nguyen P, Perez MF, Altmanová M, Ráb P, Cioffi MB (2021) Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: state of the art and future challenges. Philos Trans R Soc b: Biol Sci 376:20200098. https://doi.org/10.1098/rstb.2020.0098
Sharma PC, Grover A, Kahl G (2007) Mining microsatellites in eukaryotic genomes. Trends Biotechnol 25:11. https://doi.org/10.1016/j.tibtech.2007.07.013
Sharov AA, Ko MSH (2009) Exhaustive search for over-represented DNA sequence motifs with CisFinder. DNA Res 16:261–273. https://doi.org/10.1093/dnares/dsp014
Sigeman H, Strandh M, Proux-Wera E, Kutschera VE, Ponnikas S, Zhang H, Lundberg M, Soler L, Bunikis I, Tarka M, Hasselquist D, Nystedt B, Westerdahl H, Hansson B (2021) Avian neo-sex chromosomes reveal dynamics of recombination suppression and W degeneration. Mol Biol Evol 38:5275–5291. https://doi.org/10.1093/molbev/msab277
Singchat W, O’Connor R, Tawichasri P, Suntronpong A, Sillapaprayoon S, Suntrarachun S, Muangmai N, Baicharoen S, Peyachoknagul S, Chanhome L, Griffin D, Srikulnath K (2018) Chromosome map of the Siamese cobra: did partial synteny of sex chromosomes in the amniote represent “a hypothetical ancestral super-sex chromosome” or random distribution? BMC Genom 19:939. https://doi.org/10.1186/s12864-018-5293-6
Singchat W, Sillapaprayoon S, Muangmai N, Baicharoen S, Indananda C, Duengkae P, Peyachoknagul S, O’Connor RE, Griffin DK, Srikulnath K (2020a) Do sex chromosomes of snakes, monitor lizards, and iguanian lizards result from multiple fission of an “ancestral amniote super-sex chromosome”? Chromosome Res 28:209–228. https://doi.org/10.1007/s10577-020-09631-4
Singchat W, Ahmad SF, Sillapaprayoon S, Muangmai N, Duengkae P, Peyachoknagul S, O’Connor RE, Griffin DK, Srikulnath K (2020b) Partial amniote sex chromosomal linkage homologies shared on snake W sex chromosomes support the ancestral super-sex chromosome evolution in amniotes. Front Genet 11:948. https://doi.org/10.3389/fgene.2020.00948
Singchat W, Ahmad SF, Laopichienpong N, Suntronpong A, Panthum P, Griffin DK, Srikulnath K (2020c) Snake W sex chromosome: the shadow of ancestral amniote super-sex chromosome. Cells 9:2386. https://doi.org/10.3390/cells9112386
Singchat W, Panthum T, Ahmad SF, Baicharoen S, Muangmai N, Duengkae P, Griffin DK, Srikulnath K (2021) Remnant of unrelated amniote sex chromosomal linkage sharing on the same chromosome in house gecko lizards, providing a better understanding of the ancestral super-sex chromosome. Cells 10:2969. https://doi.org/10.3390/cells10112969
Singh L, Purdom IF, Jones KW (1976) Satellite DNA and evolution of sex chromosomes. Chromosoma 59:43–62. https://doi.org/10.1007/BF00327708
Singh L, Wadhwa R, Naidu S, Nagaraj R, Ganesan M (1994) Sex- and tissue-specific Bkm(GATA)-binding protein in the germ cells of heterogametic sex. J Biol Chem 269:25321–25327. https://doi.org/10.1016/S0021-9258(18)47250-X
Singh P, Nath R, Venkatesh V (2021) Comparative genome-wide characterization of microsatellites in Candida albicans and Candida dubliniensis leading to the development of species-specific marker. Public Health Genomics 24:1–13. https://doi.org/10.1159/000512087
Sokol D, Adkins F, Che Z, Pfabe K (2009) Finding repeats within strings. DIMACS educational module series. http://dimacs.rutgers.edu/archive/Publications/Modules/Module09-2/dimacs09-2.pdf. Accessed 11 April 2023
Song XH, Yang TB, Yan XH, Zheng FK, Xu XQ, Zhou CQ (2020) Comparison of microsatellite patterns in twenty-nine beetle genomes. Gene 757:144919. https://doi.org/10.1016/j.gene.2020.144919
Spinellis D (2012) Git IEEE Softw 29:100–101. https://doi.org/10.1109/MS.2012.61
Srikulnath K, Matsubara K, Uno Y, Thongpan A, Suputtitada S, Apisitwanich S, Matsuda Y, Nishida C (2009a) Karyological characterization of the butterfly lizard (Leiolepis reevesii rubritaeniata, Agamidae, Squamata) by molecular cytogenetic approach. Cytogenet Genome Res 125:213–223. https://doi.org/10.1159/000230005
Srikulnath K, Nishida C, Matsubara K, Uno Y, Thongpan A, Suputtitada S, Apisitwanich S, Matsuda Y (2009b) Karyotypic evolution in squamate reptiles: comparative gene mapping revealed highly conserved linkage homology between the butterfly lizard (Leiolepis reevesii rubritaeniata, Agamidae, Lacertilia) and the Japanese four-striped rat snake (Elaphe quadrivirgata, Colubridae, Serpentes). Chromosome Res 17:975–986. https://doi.org/10.1007/s10577-009-9101-7
Srikulnath K, Uno Y, Nishida C, Matsuda Y (2013) Karyotype evolution in monitor lizards: cross-species chromosome mapping of cDNA reveals highly conserved synteny and gene order in the Toxicofera clade. Chromosome Res 21:805–819. https://doi.org/10.1007/s10577-013-9398-0
Srikulnath K, Matsubara K, Uno Y, Nishida C, Olsson M, Matsuda Y (2014) Identification of the linkage group of the Z sex chromosomes of the sand lizard (Lacerta agilis, Lacertidae) and elucidation of karyotype evolution in lacertid lizards. Chromosoma 123:563–575. https://doi.org/10.1007/s00412-014-0467-8
Srikulnath K, Uno Y, Nishida Y, Ota H, Matsuda Y (2015) Karyotype reorganization in the Hokou Gecko (Gekko hokouensis, Gekkonidae): the process of microchromosome disappearance in Gekkota. PLoS One 10:e0134829. https://doi.org/10.1371/journal.pone.0134829
Srikulnath K, Ahmad SF, Singchat W, Panthum T (2021) Why do some vertebrates have microchromosomes? Cells 10:2182. https://doi.org/10.3390/cells10092182
Srivastava S, Avvaru AK, Sowpati DT, Mishra RK (2019) Patterns of microsatellite distribution across eukaryotic genomes. BMC Genom 20:253. https://doi.org/10.1186/s12864-019-5516-5
Staples T, Wayland R, Payette S (2003) The Fedora Project D-Lib Magazine 9:1082–9873
Steinemann S, Steinemann M (2005) Retroelements: tools for sex chromosome evolution. Cytogenet Genome Res 110:134–143. https://doi.org/10.1159/000084945
Steinfartz S, Küsters D, Tautz D (2004) Isolation and characterization of polymorphic tetranucleotide microsatellite loci in the Fire salamander Salamandra salamandra (Amphibia: Caudata). Mol Ecol Notes 4:626–628. https://doi.org/10.1111/j.1471-8286.2004.00716.x
Temminck CJ (1815) Manuel d’ornithologie, ou, Tableau systèmatique des oiseaux qui se trouvent en Europe. Paris, G. Dufour
Thongchum R, Singchat W, Laopichienpong N, Tawichasr P, Kraichak E, Prakhongcheep O, Sillapaprayoon S, Muangmai N, Baicharoen S, Suntrarachun S, Chanhome L, Peyachoknagul S, Srikulnath K (2019) Diversity of PBI-DdeI satellite DNA in snakes correlates with rapid independent evolution and different functional roles. Sci Rep 9:15459. https://doi.org/10.1038/s41598-019-51863-w
Tóth G, Gáspári Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981. https://doi.org/10.1101/gr.10.7.967
Tsuda Y, Nishida-Umehara C, Junko I, Yamada K, Matsuda Y (2007) Comparison of the Z and W sex chromosomal architectures in elegant crested tinamou (Eudromia elegans) and ostrich (Struthio camelus) and the process of sex chromosome differentiation in palaeognathous birds. Chromosoma 116:159–173. https://doi.org/10.1007/s00412-006-0088-y
Untergasser ACI, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115–e115. https://doi.org/10.1093/nar/gks596
Viswanathan G, Afanasyev V, Buldyrev SV, Murphy EJ, Prince PA, Stanley HE (1996) Lévy flight search patterns of wandering albatrosses. Nature 381:413–415. https://doi.org/10.1038/381413a0
Wang G, Vasquez KM (2007) Z-DNA, an active element in the genome. Front Biosci 12:4424–4438
Wang X, Wang L (2016) GMATA: an integrated software package for genome-scale SSR mining, marker development and viewing. Front Plant Sci 7:1350. https://doi.org/10.3389/fpls.2016.01350
Wang YH, Yeh CH, Young HWV, Hu K, Lo MT (2014) On the computational complexity of the empirical mode decomposition algorithm. Phys a: Stat Mech 400:159–167. https://doi.org/10.1016/j.physa.2014.01.020
Wattanadilokchatkun P, Panthum T, Jaisamut K, Ahmad SF, Dokkaew S, Muangmai N, Duengkae P, Singchat W, Srikulnath K (2022) Characterization of microsatellite distribution in Siamese fighting fish genome to promote conservation and genetic diversity. Fishes 7:251. https://doi.org/10.3390/fishes7050251
Wright AE, Dean R, Zimmer F, Mank JE (2016) How to make a sex chromosome. Nat Commun 7:12087. https://doi.org/10.1038/ncomms12087
Xu Y, Hu Z, Wang C, Zhang X, Li J, Yue B (2016) Characterization of perfect microsatellite based on genome-wide and chromosome level in rhesus monkey (Macaca mulatta). Gene 2:269–275. https://doi.org/10.1016/j.gene.2016.07.016
Yu H (2018) An improved combinatorial algorithm for Boolean matrix multiplication. Inf Comput 261:240–247. https://doi.org/10.1016/j.ic.2018.02.006
Acknowledgements
The authors extend grateful thanks to the Center for Agricultural Biotechnology, Kasetsart University, Nakhon Pathom, Thailand, and NSTDA Supercomputer Center (ThaiSC), Pathum Thani, Thailand, for providing computational infrastructures. We also gratefully acknowledge the Center for Bio-Medical Engineering Core Facility at Dankook University, Cheonan, South Korea. We also thank the Faculty of Science for providing supporting research facilities. We express our gratitude to Sucha Supittayapornpong (Vidyasirimedhi Institute of Science and Technology, Thailand) for valuable discussions.
Funding
This research was financially supported by a grant from the Faculty of Science, Kasetsart University, Thailand (No.6501.0901.1/574) awarded to R.R. and K.S.; the High-Quality Research Graduate Development Cooperation Project between Kasetsart University and the National Science and Technology Development Agency (NSTDA) awarded to T.P. and K.S.; the Thailand Science Research and Innovation through the Kasetsart University Reinventing University Program 2021 (3/2564) awarded to T.P., A.L. and K.S.; the e-ASIA Joint Research Program (no. P1851131) awarded to W.S. and K.S.; the National Science and Technology Development Agency (NSTDA) (NSTDA P-19–52238 and JRA-CO-2564–14003-TH) awarded to W.S. and K.S.; the National Research Council of Thailand (NRCT/2565) awarded to K.S.; the National Research Council of Thailand, National Science and Technology Development Agency (NSTDA), and Thailand Science Research and Innovation (TSRI) (N42A660605) awarded to W.S., S.F.A., E.K., P.D., N.M., and K.S.; the Kasetsart University Research and Development Institute (FF (KU)25.64 and FF(S-KU)17.66) and a support from the International SciKU Branding (ISB), Faculty of Science, Kasetsart University awarded to W.S., S.F.A., and K.S.
Author information
Authors and Affiliations
Contributions
Conceptualization, K.S; methodology R.R., P.W., S.F.A., and K.S.; software, R.R., P.W., and S.F.A.; formal analysis, R.R. and K.S.; writing—original draft preparation, R.R. and K.S.; writing—review and editing, R.R., P.W., T.P., K.J., A.L., T.T., W.S., S.F.A., K.H., E.K., N.M., A.K., P.D., A.A. and K. S.; visualization, R.R., P.W., T.P., W.S., and K.S.; project administration, K.S.; funding acquisition, K.S. All authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Informed consent
Not applicable.
Competing interests
The authors declare no competing interests.
Institutional review board statement
Not applicable.
Additional information
Responsible Editor: Lucia Carbone
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
About this article
Cite this article
Rasoarahona, R., Wattanadilokchatkun, P., Panthum, T. et al. MicrosatNavigator: exploring nonrandom distribution and lineage-specificity of microsatellite repeat motifs on vertebrate sex chromosomes across 186 whole genomes. Chromosome Res 31, 29 (2023). https://doi.org/10.1007/s10577-023-09738-4
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10577-023-09738-4