Skip to main content

Advertisement

Log in

A Compact Solar Laser Side-Pumping Scheme Using Four Off-Axis Parabolic Mirrors

  • Published:
Journal of Russian Laser Research Aims and scope Submit manuscript

Abstract

Laser side-pumping approach is an extremely attractive configuration for many laser applications. Through this approach, the laser beam can be generated in the lowest possible spatial modes, with the highest beam brightness and quality. In this study, a significant improvement in the solar laser output power and collection efficiency of a side-pumped Nd:YAG laser rod, with a length of 84 mm and a diameter of 7.5 mm, is numerically achieved using four off-axis primary parabolic mirrors with a total collection area of 10 m2. Four fused-silica aspheric-lens secondary concentrators are used to efficiently couple the concentrated solar power from the four focal zones of the off-axis parabolic mirrors into a single laser rod enclosed within four 2V-shaped pump cavities. The optimum solar-laser design parameters are determined using the ZEMAX© nonsequential ray-tracing and LASCAD© laser-cavity analysis software. A power of 346.8 W continuous-wave 1064 nm solar laser is determined numerically in the multimode operation. This corresponds to a solar laser collection efficiency and solar-to-laser power conversion efficiency of 34.7 W/m2 and 3.84%, respectively, which demonstrate an improvement of 2.04 and 1.58 times, respectively, over the existing experimental record for side-pumped Nd:YAG solar lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. G. Young, Appl. Opt., 5, 993 (1966).

    Article  ADS  Google Scholar 

  2. M. Lando, J. A. Kagan, Y. Shimony, et al., Proc. SPIE, 3110, 196 (1997).

    Article  ADS  Google Scholar 

  3. T. Yabe, T. Ohkubo, T. H. Dinh, et al., in: S. N. Mathaudhu, W.H. Sillekens, N. R. Neelameggham, and N. Hort (Eds.), Magnesium Technology, Springer, Cham (2012), p. 55.

    Google Scholar 

  4. T. Yabe, S. Uchida, K. Ikuta, et al., Appl. Phys. Lett., 89, 261107 (2006).

    Article  ADS  Google Scholar 

  5. Z. Guan, Z. Changming, S. Yang, et al., Laser Phys. Lett., 14, 055804 (2017).

    Article  ADS  Google Scholar 

  6. G. Overton, Laser Focus World, 49 (2013).

  7. M. Oliveira, D. Liang, J. Almeida, et al., Sol. Energ. Mater. Sol. Cells, 155, 430 (2016).

    Article  Google Scholar 

  8. T. Yabe, T. Ohkubo, S. Uchida, et al., J. Phys: Conf. Ser., 112, 042072 (2008).

    Google Scholar 

  9. T. Yabe, T. Ohkubo, S. Uchida, et al., Appl. Phys. Lett., 90, 261120 (2007).

    Article  ADS  Google Scholar 

  10. D. Liang and J. Almeida, Opt. Express, 19, 26399 (2011).

    Article  ADS  Google Scholar 

  11. T. H. Dinh, T. Ohkubo, T. Yabe, and H. Kuboyama, Opt. Lett., 37, 2670 (2012).

    Article  ADS  Google Scholar 

  12. D. Liang, J. Almeida, C. R. Vistas, and E. Guillot, Sol. Energ. Mater. Sol. Cells, 159, 435 (2017).

    Article  Google Scholar 

  13. C. Zhao, Z. Guan, and H. Zhang, Proc. SPIE, 10511, 105111N2 (2018).

    Google Scholar 

  14. D. Liang, C. R. Vistas, B. D. Tibúrcio, and J. Almeida, Sol. Energ. Mater. Sol. Cells, 185, 75 (2018).

    Article  Google Scholar 

  15. M. Lando, J. Kagan, B. Linyekin, and V. Dobrusin, Opt. Commun., 222, 371 (2003).

    Article  ADS  Google Scholar 

  16. J. Almeida, D. Liang, and E. Guillot, Opt. Laser Techol., 44, 2115 (2012).

    Article  ADS  Google Scholar 

  17. D. Liang and J. Almeida, Opt. Express, 21, 25107 (2013).

    Article  ADS  Google Scholar 

  18. D. Liang, J. Almeida, and E. Guillot, Appl. Phys. B: Lasers Opt., 111, 305 (2013).

    Article  ADS  Google Scholar 

  19. D. Liang, C. R. Vistas, J. Almeida, et al., Sol. Energ. Mater. Sol. Cells, 192, 147 (2019).

    Article  Google Scholar 

  20. C. R. Vistas, D. Liang, J. Almeida, and E. Guillot, Opt. Commun., 366, 50 (2016).

    Article  ADS  Google Scholar 

  21. J. Almeida, D. Liang, C. R. Vistas, et al., Appl. Phys. B: Lasers Opt., 121, 473 (2015).

    Article  ADS  Google Scholar 

  22. R. Bouadjemine, D. Liang, J. Almeida, et al., Opt. Laser Tech., 97, 1 (2017).

    Article  ADS  Google Scholar 

  23. M. Weksler and J. Shwartz, IEEE J. Quantum Electron., 24, 1222 (1988).

    Article  ADS  Google Scholar 

  24. H. Arashi, Y. Oka, N. Sasahara, et al., Jpn. J. Appl. Phys., 23, 1051 (1984).

    Article  ADS  Google Scholar 

  25. R. M. J. Benmair, J. Kagan, Y. Kalisky, et al., Opt. Lett., 15, 36 (1990).

    Article  ADS  Google Scholar 

  26. D. Jenkins, M. Lando, J. O’Gallagher, and R. Winston, Bull. Israel Phys. Soc., 101, 42 (1996).

    Google Scholar 

  27. [www.newport.com/n/optical-materials].

  28. Standard Tables for Reference Solar Spectral Irradiances: Direct, Normal, and Hemispherical on 37° Tilted Surface, ASTM Standard G173–03 (2012).

  29. Z. Bin, C. Zhao, J. He, and S. Yang, Acta Opt. Sin., 27, 1797 (2007).

    Google Scholar 

  30. T. Brand, Opt. Lett., 20, 1776 (1995).

    Article  ADS  Google Scholar 

  31. W. Koechner, Solid-State Laser Engineering, 6th ed., Springer, Berlin (1999).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutaka, R., Liang, D., Bouadjemine, R. et al. A Compact Solar Laser Side-Pumping Scheme Using Four Off-Axis Parabolic Mirrors. J Russ Laser Res 42, 453–461 (2021). https://doi.org/10.1007/s10946-021-09982-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-09982-1

Keywords