Skip to main content
Log in

Data Digitalisation in the Open-Pit Mining Industry: A Scoping Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Mining 4.0 has risen from the need of the extractive industry to answer the technical challenges that rapidly shift at the mining sites. Currently, many models can be developed to address this issue however, the way in which the digitalisation of information occurs is not entirely clear. Therefore, this scoping review aims to address the main digitalisation tools and processes used in the open-pit mining industry. As a secondary outcome, it intends to provide a better understanding of this new era and the emergence of Mining 4.0. A scoping review protocol with the guidelines set to conduct the review has already been published. The Preferred Reporting of Items for Systematic Reviews and Meta-Analyses were used conduct the research: the keywords “digitalisation”/“digitalization”) and “modelling”/“modeling”), which were combined with “open pit” and “open cast” and applied in the most appropriate databases. Initially, 6775 records were identified; after applying exclusion criteria such as year, document type, source type, language, and after a first screen throughout each study title, 65 papers were considered eligible. The records were full-text screened in order to retrieve the needed information, where only 23 records remained. After, the snowballing technique was applied, and 5 more papers were added to the study. It was identified different techniques and ways of applying them; the chosen processes and tools were chosen according to the purpose of each study. Most of the studies combined photogrammetric techniques (using unmanned aerial vehicles) with topographic information. Terrestrial laser scanning techniques were also reported. Regarding the software, AgiSoft PhotoScan was chosen as the primary digitalisation tool in most studies. Hopefully, this scoping review will help authors to understand what possibilities they have in terms of software and tools, according to the issue they are trying to solve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. https://www.rocscience.com/software/dips.

  2. https://www.esri.com/en-us/arcgis/about-arcgis/overview.

  3. http://www.dataminesoftware.com/wp-content/uploads/2019/05/sirovision-open-pit-web-brochure.pdf.

  4. http://ccwu.me/vsfm/.

  5. https://www.rhino3d.com/6/features.

  6. http://www.terrasolid.com/solutions.php.

References

  1. Esposito G, Mastrorocco G, Salvini R, Oliveti M, Starita P (2017) Application of UAV photogrammetry for the multi-temporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy. Environ Earth Sci 76(103):16

    Google Scholar 

  2. Riquelme AJ, Abellán A, Tomás R (2015) Discontinuity spacing analysis in rock masses using 3D point clouds. Eng Geol 195:185–195. https://doi.org/10.1016/j.enggeo.2015.06.009

    Article  Google Scholar 

  3. Francioni M, Salvini R, Stead D, Coggan J (2018) Improvements in the integration of remote sensing and rock slope modelling. Nat Hazards 90:975–1004. https://doi.org/10.1007/s11069-017-3116-8

    Article  Google Scholar 

  4. Arnous MO (2011) Integrated remote sensing and GIS techniques for landslide hazard zonation: a case study Wadi Watier area, South Sinai, Egypt. J Coast Conserv 15:477–497. https://doi.org/10.1007/s11852-010-0137-9

    Article  Google Scholar 

  5. Abellán A, Vilaplana JM, Martínez J (2006) Application of a long-range terrestrial laser scanner to a detailed rockfall study at Vall de Núria (Eastern Pyrenees, Spain). Eng Geol 88:136–148. https://doi.org/10.1016/j.enggeo.2006.09.012

    Article  Google Scholar 

  6. Mancini F, Dubbini M, Gattelli M, Stecchi F, Fabbri S, Gabbianelli G (2013) Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: the structure from motion approach on coastal environments. Remote Sens 5:6880–6898. https://doi.org/10.3390/rs5126880

    Article  Google Scholar 

  7. Bemis SP, Micklethwaite S, Turner D, James MR, Akciz S, Thiele T, Bangash SHA (2014) Ground-based and UAV-Based photogrammetry: a multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J Struct Geol 69:163–178. https://doi.org/10.1016/j.jsg.2014.10.007

    Article  Google Scholar 

  8. Pesci A, Fabris M, Conforti D, Loddo F, Baldi P, Anzidei M (2007) Integration of ground-based laser scanner and aerial digital photogrammetry for topographic modelling of Vesuvio volcano. J Volcanol Geotherm Res 162:123–138. https://doi.org/10.1016/j.jvolgeores.2007.02.005

    Article  Google Scholar 

  9. Abellán A, Oppikofer T, Jaboyedoff M, Rosser NJ, Lim M, Lato MJ (2014) Terrestrial laser scanning of rock slope instabilities. Earth Surf Process Landforms 39:80–97. https://doi.org/10.1002/esp.3493

    Article  Google Scholar 

  10. Vanneschi C, Eyre M, Francioni M, Coggan J (2017) The use of remote sensing techniques for monitoring and characterization of slope instability. Procedia Eng 191:150–157. https://doi.org/10.1016/j.proeng.2017.05.166

    Article  Google Scholar 

  11. Thoeni K, Giacomini A, Murtagh R, Kniest E (2014) A comparison of multi-view 3D reconstruction of a rock wall using several cameras and a Laser scanner. Int Arch Photogramm Remote Sens Spat Inf Sci ISPRS Arch 40:573–580. https://doi.org/10.5194/isprsarchives-XL-5-573-2014

    Article  Google Scholar 

  12. Muzik J, Vondráčková T, Sitányiová D, Plachý J, Musílek J (2015) Limestone quarry reserve estimation by laser scanning and GIS tools. Procedia Earth Planet Sci 15:382–388. https://doi.org/10.1016/j.proeps.2015.08.008

    Article  Google Scholar 

  13. Passalacqua P, Belmont P, Staley DM, Simley JD, Arrowsmith JR, Bode CA, Crosby C, DeLong SB, Glenn NF, Kelly SA, Lague D, Sangireddy H, Schaffrath K, Tarboton DG, Wasklewicz T, Wheaton JM (2015) Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: a review. Earth-Sci Rev 148:174–193. https://doi.org/10.1016/j.earscirev.2015.05.012

    Article  Google Scholar 

  14. Eisenbeiss H, Sauerbier M (2011) Investigation of UAV systems and flight modes for photogrammetric applications. Photogramm Rec 26:400–421. https://doi.org/10.1111/j.1477-9730.2011.00657.x

    Article  Google Scholar 

  15. Vollgger SA, Cruden AR (2016) Mapping folds and fractures in basement and cover rocks using UAV photogrammetry, Cape Liptrap and Cape Paterson, Victoria. Australia J Struct Geol 85:168–187. https://doi.org/10.1016/j.jsg.2016.02.012

    Article  Google Scholar 

  16. Sayab M, Aerden D, Paananen M, Saarela P (2018) Virtual structural analysis of Jokisivu open pit using “structure-from-motion” Unmanned Aerial Vehicles (UAV) photogrammetry: Implications for structurally-controlled gold deposits in Southwest Finland. Remote Sens. https://doi.org/10.3390/rs10081296

    Article  Google Scholar 

  17. Tong Xiaohua, Liu Xiangfeng, Chen Peng, Liu Shijie, Luan Kuifeng, Li Lingyun, Liu Shuang, Liu Xianglei, Xie Huan, Jin Yanmin, Hong Zhonghua (2015) Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sens 7:6635–6662

    Article  Google Scholar 

  18. Shahbazi M, Sohn G, Théau J, Menard P, Theau J, Menard P (2015) Development and evaluation of a UAV-photogrammetry system for precise 3D environmental modeling. Sensors (Switzerland) 15:27493–27524. https://doi.org/10.3390/s151127493

    Article  Google Scholar 

  19. Duarte J, Rodrigues F, Santos BJ (2019) Data digitalisation in the mining industry–a scoping review protocol. Int J Occup Environ Saf 3:64–67. https://doi.org/10.24840/2184-0954_003.001_0006

    Article  Google Scholar 

  20. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, Altman DG, Booth A, Chan AW, Chang S, Clifford T, Dickersin K, Egger M, Gøtzsche PC, Grimshaw JM, Groves T, Helfand M, Higgins J, Lasserson T, Lau J, Lohr K, McGowan J, Mulrow C, Norton M, Page M, Sampson M, Schünemann H, Simera I, Summerskill W, Tetzlaff J, Trikalinos TA, Tovey D, Turner L, Whitlock E (2015) Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: elaboration and explanation. BMJ 349:1–25. https://doi.org/10.1136/bmj.g7647

    Article  Google Scholar 

  21. Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, Atkins D, Barbour V, Barrowman N, Berlin JA, Clark J, Clarke M, Cook D, D’Amico R, Deeks JJ, Devereaux PJ, Dickersin K, Egger M, Ernst E, Gøtzsche PC, Grimshaw J, Guyatt G, Higgins J, Ioannidis JPA, Kleijnen J, Lang T, Magrini N, McNamee D, Moja L, Mulrow C, Napoli M, Oxman A, Pham B, Rennie D, Sampson M, Schulz KF, Shekelle PG, Tovey D, Tugwell P (2009) Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. https://doi.org/10.1371/journal.pmed.1000097

    Article  Google Scholar 

  22. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, Moher D, Peters MDJ, Horsley T, Weeks L, Hempel S, Akl EA, Chang C, McGowan J, Stewart L, Hartling L, Aldcroft A, Wilson MG, Garritty C, Lewin S, Godfrey CM, Macdonald MT, Langlois EV, Soares-Weiser K, Moriarty J, Clifford T, Tuncalp O, Straus SE (2018) PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Int Med 169:467–473. https://doi.org/10.7326/M18-0850

    Article  Google Scholar 

  23. Wohlin C (2014) Guidelines for snowballing in systematic literature studies and a replication in software engineering. Proc 18th Int Conf Eval Assess Softw Eng EASE’14 1:10. https://doi.org/10.1145/2601248.2601268

    Article  Google Scholar 

  24. Higgins JPTT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savović J, Schulz KF, Weeks L, Sterne JACC (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:1–9. https://doi.org/10.1136/bmj.d5928

    Article  Google Scholar 

  25. CASP: Qualitative Checklist (2018)

  26. Salvini R, Riccucci S, Gullì D, Giovannini R, Vanneschi C, Francioni M (2015) Geological application of uav photogrammetry and terrestrial laser scanning in marble quarrying (Apuan alps, italy). Eng Geol Soc Territ 5:979–983. https://doi.org/10.1007/978-3-319-09048-1_188

    Article  Google Scholar 

  27. Salvini R, Mastrorocco G, Seddaiu M, Rossi D, Vanneschi C (2017) The use of an unmanned aerial vehicle for fracture mapping within a marble quarry (Carrara, Italy): photogrammetry and discrete fracture network modelling. Geomatics Nat Hazards Risk 8:34–52. https://doi.org/10.1080/19475705.2016.1199053

    Article  Google Scholar 

  28. Salvini R, Mastrorocco G, Esposito G, Di Bartolo S, Coggan J, Vanneschi C (2018) Use of a remotely piloted aircraft system for hazard assessment in a rocky mining area (Lucca, Italy). Nat Hazards Earth Syst Sci 18:287–302. https://doi.org/10.5194/nhess-18-287-2018

    Article  Google Scholar 

  29. Morales M, Panthi KK, Botsialas K (2019) Slope stability assessment of an open pit mine using three-dimensional rock mass modeling. Bull Eng Geol Environ 78:1249–1264. https://doi.org/10.1007/s10064-017-1175-4

    Article  Google Scholar 

  30. Morales M, Panthi KK, Botsialas K, Holmøy KH (2019) Development of a 3D structural model of a mine by consolidating different data sources. Bull Eng Geol Environ 78:35–53. https://doi.org/10.1007/s10064-017-1068-6

    Article  Google Scholar 

  31. Shahbazi M, Sohn G, Théau J, Ménard P (2015) UAV-based point cloud generation for open-pit mine modelling. Int Arch Photogramm Remote Sens Spat Inf Sci ISPRS Arch 40:313–320. https://doi.org/10.5194/isprsarchives-XL-1-W4-313-2015

    Article  Google Scholar 

  32. Kulatilake PHSW, Shu B (2015) Prediction of rock mass deformations in three dimensions for a part of an open pit mine and comparison with field deformation monitoring data. Geotech Geol Eng 33:1551–1568. https://doi.org/10.1007/s10706-015-9921-5

    Article  Google Scholar 

  33. Svennevig K, Guarnieri P, Stemmerik L (2015) From oblique photogrammetry to a 3D model—structural modeling of Kilen, eastern North Greenland. Comput Geosci 83:120–126. https://doi.org/10.1016/j.cageo.2015.07.008

    Article  Google Scholar 

  34. González-Aguilera D, Fernández-Hernández J, Mancera-Taboada J, Rodríguez-Gonzálvez P, Hernández-López D, Felipe-García B, Gozalo-Sanz I, Arias-Perez B (2012) 3D Modelling and accuracy assessment of granite quarry using unmanned aerial vehicle. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 1:37–42. https://doi.org/10.5194/isprsannals-I-3-37-2012

    Article  Google Scholar 

  35. Francioni M, Salvini R, Stead D, Giovannini R, Riccucci S, Vanneschi C, Gullì D, Gulli D (2015) An integrated remote sensing-GIS approach for the analysis of an open pit in the Carrara marble district, Italy: slope stability assessment through kinematic and numerical methods. Comput Geotech 67:46–63. https://doi.org/10.1016/j.compgeo.2015.02.009

    Article  Google Scholar 

  36. Caudal P, Grenon M, Turmel D, Locat J (2017) Analysis of a Large Rock Slope Failure on the East Wall of the LAB Chrysotile Mine in Canada: liDAR Monitoring and Displacement Analyses. Rock Mech Rock Eng 50:807–824. https://doi.org/10.1007/s00603-016-1145-3

    Article  Google Scholar 

  37. Jayanthu S, Karthik G (2018) Evaluation of stability of cutslopes in open cast metal mines using numerical modelling and field monitoring. Model Meas Control C 79:12–15

    Article  Google Scholar 

  38. Sengupta S, Krishna AP, Roy I (2015) Slope failure susceptibility zonation using integrated remote sensing and GIS techniques: a case study over Jhingurdah open pit coal mine, Singrauli coalfield, India. J Earth Syst Sci. https://doi.org/10.1007/s12040-018-0982-8

    Article  Google Scholar 

  39. Creus PK, Basson IJ, Koegelenberg CK, Ekkerd J, de Graaf PJHH, Bester M, Mokele T (2019) 3D Fabric analysis of Venetia Mine, South Africa: using structural measurements and implicitly-modelled surfaces for improved pit slope design and risk management. J African Earth Sci 155:137–150. https://doi.org/10.1016/j.jafrearsci.2019.04.009

    Article  Google Scholar 

  40. Cardozo N, Montes C, Marín D, Gutierrez I, Palencia A (2016) Structural analysis of the Tabaco anticline, Cerrejón open-cast coal mine, Colombia. South America J Struct Geol 87:115–133. https://doi.org/10.1016/j.jsg.2016.04.010

    Article  Google Scholar 

  41. Lindqvist T, Skyttä P, Koivisto E, Häkkinen T, Somervuori P (2017) Delineating the network of brittle structures with geotechnical, structural and reflection seismic data, Kevitsa open pit, northern Finland. GeoResJ 13:159–174. https://doi.org/10.1016/j.grj.2017.04.004

    Article  Google Scholar 

  42. Kondela J, Prekopová M, Budinský V, Pandula B, Ďuriška I (2018) The importance of seismic methods application for geological reconstruction of rockslide threatened open pit. J Appl Geophys 159:304–311. https://doi.org/10.1016/j.jappgeo.2018.09.005

    Article  Google Scholar 

  43. Vanneschi C, Eyre M, Venn A, Coggan JS (2019) Investigation and modeling of direct toppling using a three-dimensional distinct element approach with incorporation of point cloud geometry. Landslides. https://doi.org/10.1007/s10346-019-01192-w

    Article  Google Scholar 

  44. Wajs J (2015) Research on surveying technology applied for DTM modelling and volume computation in open pit mines. Min Sci 22:75–84. https://doi.org/10.5277/msc152207

    Article  Google Scholar 

  45. Wężyk P, Szostak M, Krzaklewski W, Pająk M, Pierzchalski M, Szwed P, Hawryło P, Ratajczak M (2015) Landscape monitoring of post-industrial areas using LiDAR and GIS technology. Geod Cartogr 64:125–137. https://doi.org/10.1515/geocart-2015-0010

    Article  Google Scholar 

  46. Xiang J, Chen J, Sofia G, Tian Y, Tarolli P (2018) Open-pit mine geomorphic changes analysis using multi-temporal UAV survey. Environ Earth Sci 77:220

    Article  Google Scholar 

  47. Padró J-C, Carabassa V, Balagué J, Brotons L, Alcañiz JM, Pons X (2019) Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Sci Total Environ 657:1602–1614. https://doi.org/10.1016/j.scitotenv.2018.12.156

    Article  Google Scholar 

  48. Horner J, Naranjo A, Weil J (2016) Digital data acquisition and 3D structural modelling for mining and civil engineering—the La Colosa gold mining project. Colombia Geomech und Tunnelbau 9:52–57. https://doi.org/10.1002/geot.201500046

    Article  Google Scholar 

  49. Basson I, Lourens P, Paetzold H-D, Thomas S, Brazier R, Molabe P (2017) Structural analysis and 3D modelling of major mineralizing structures at the Phalaborwa copper deposit. Ore Geol Rev 83:30–42. https://doi.org/10.1016/j.oregeorev.2016.12.002

    Article  Google Scholar 

  50. Patikova A, Stoll P, Allee C (xxxx) Digital photogrammetry in the practice of open pit mining. Inf Syst

  51. Turner D, Lucieer A, Watson C (2012) An automated technique for generating georectified mosaics from ultra-high resolution Unmanned Aerial Vehicle (UAV) imagery, based on Structure from Motion (SFM) point clouds. Remote Sens 4:1392–1410. https://doi.org/10.3390/rs4051392

    Article  Google Scholar 

  52. Ai M, Hu Q, Li J, Wang M, Yuan H, Wang S (2015) A robust photogrammetric processing method of low-altitude UAV images. Remote Sens 7:2302–2333. https://doi.org/10.3390/rs70302302

    Article  Google Scholar 

  53. Anai T, Sasaki T, Osaragi K, Yamada M, Otomo F, Otani H (2012) Automatic exterior orientation procedure for low-cost uav photogrammetry using video image tracking technique and Gps information. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci B7:469–474. https://doi.org/10.5194/isprsarchives-xxxix-b7-469-2012

    Article  Google Scholar 

  54. Chiang KW, Tsai ML, Naser ES, Habib A, Chu CH (2015) A new calibration method using low cost MEM IMUs to verify the performance of UAV-borne MMS payloads. Sensors (Switzerland). 15:6560–6585. https://doi.org/10.3390/s150306560

    Article  Google Scholar 

  55. Prokop A, Panholzer H (2009) Assessing the capability of terrestrial laser scanning for monitoring slow moving landslides. Nat Hazards Earth Syst Sci 9:1921–1928. https://doi.org/10.5194/nhess-9-1921-2009

    Article  Google Scholar 

  56. Yi Z, Liwei G, Li Y (2012) Research on error propagation of point cloud registration. IEEE Int Conf Comput Sci Autom Eng 2:18–21. https://doi.org/10.1109/CSAE.2012.6272719

    Article  Google Scholar 

  57. Li X, Chen Z, Zhang L, Jia D (2016) Construction and accuracy test of a 3D model of non-metric camera images using Agisoft PhotoScan. Procedia Environ Sci 36:184–190. https://doi.org/10.1016/j.proenv.2016.09.031

    Article  Google Scholar 

  58. LLC A (2018) Agisoft PhotoScan user manual

  59. Cosso T, Ferrando I, Orlando A (2014) Surveying and mapping a cave using 3D laser scanner: the open challenge with free and open source software. Int Arch Photogramm Remote Sens Spat Inf Sci 40:181–186. https://doi.org/10.5194/isprsarchives-XL-5-181-2014

    Article  Google Scholar 

  60. Dewez TJB, Girardeau-Montaut D, Allanic C, Rohmer J (2016) Facets : a Cloudcompare plugin to extract geological planes from unstructured 3D point clouds. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci B5:799–804. https://doi.org/10.5194/isprs-archives-XLI-B5-799-2016

    Article  Google Scholar 

  61. Niederheiser R, MokroA M, Lange J, Petschko H, Prasicek G, Elberink SO (2016) Deriving 3D point clouds from terrestrial photographs—comparison of different sensors and software. Int Arch Photogramm Remote Sens Spat Inf Sci ISPRS Arch 41:685–692. https://doi.org/10.5194/isprsarchives-XLI-B5-685-2016

    Article  Google Scholar 

  62. Firdaus MI, Rau JY (2017) Comparisons of the three-dimensional model reconstructed using MicMac. In: PIX4D mapper and photoscan proceedings of 38th Asian conference remote sensing Lives, ACRS 2017

  63. Alidoost F, Arefi H (2017) Comparison of UAS-based photogrammetry software for 3D point cloud generation: a survey over a historical site. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 4:55–61. https://doi.org/10.5194/isprs-annals-IV-4-W4-55-2017

    Article  Google Scholar 

  64. Barbasiewicz A, Widerski T, Daliga K (2018) The analysis of the accuracy of spatial models using photogrammetric software: Agisoft Photoscan and Pix4D. In: E3S Web conference vol 26, . https://doi.org/10.1051/e3sconf/20182600012

  65. Uygucgil H, Konuk A (2015) Reserve estimation in multivariate mineral deposits using geostatistics and GIS. J Min Sci 51:993–1000. https://doi.org/10.1134/S1062739115050186

    Article  Google Scholar 

  66. Abellán A, Calvet J, Vilaplana JM, Blanchard J (2010) Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology 119:162–171. https://doi.org/10.1016/j.geomorph.2010.03.016

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support of “Fundação para a Ciência e Tecnologia” (FCT–Portugal) through the PhD grant SFRH/BD/143241/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Duarte.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, J., Rodrigues, M.F. & Santos Baptista, J. Data Digitalisation in the Open-Pit Mining Industry: A Scoping Review. Arch Computat Methods Eng 28, 3167–3181 (2021). https://doi.org/10.1007/s11831-020-09493-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-020-09493-3

Navigation