Skip to main content
Log in

Single-electron charging and ultrafast dynamics of bimetallic Au144−xAgx(PET)60 nanoclusters

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Alloying is an important strategy in tailoring the functionality of materials. In metal nanoclusters (NCs), the introduction of a heterometal leads to alloy nanoclusters that often outperform the homometal ones in terms of the physical and chemical properties. In this work, a series of four M144(PET)60 alloy NCs (where, M = Au/Ag, PET = −SCH2CH2Ph) are synthesized and characterized. The silver doping into the homogold template (Au144) leads to more prominent optical absorption features in the steady-state spectrum in the visible range. Femtosecond transient absorption spectroscopy reveals the effect of Ag doping on the electronic relaxation dynamics compared to Au144 and the pump fluence independent dynamics. Electrochemical results reflect a narrowing of HOMO—LUMO gap (Eg) induced by Ag doping. A temperature dependence of the single-electron charging is also observed for the series of alloy NCs, in which the Eg values of the alloy NCs enlarge as the temperature decreases, which is characteristic of semiconducting behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Y. W.; Zhou, M.; Song, Y. B.; Higaki, T.; Wang, H.; Jin, R. C. Double-helical assembly of heterodimeric nanoclusters into supercrystals. Nature 2021, 594, 380–384.

    Article  CAS  Google Scholar 

  2. Negishi, Y.; Nakazaki, T.; Malola, S.; Takano, S.; Niihori, Y.; Kurashige, W.; Yamazoe, S.; Tsukuda, T.; Häkkinen, H. A critical size for emergence of nonbulk electronic and geometric structures in dodecanethiolate-protected Au clusters. J. Am. Chem. Soc. 2015, 137, 1206–1212.

    Article  CAS  Google Scholar 

  3. Hu, F.; Guan, Z. J.; Yang, G. Y.; Wang, J. Q.; Li, J. J.; Yuan, S. F.; Liang, G. J.; Wang, Q. M. Molecular gold nanocluster Au156 showing metallic electron dynamics. J. Am. Chem. Soc. 2021, 143, 17059–17067.

    Article  CAS  Google Scholar 

  4. Shen, H.; Xiang, S. J.; Xu, Z.; Liu, C.; Li, X. H.; Sun, C. F.; Lin, S. C.; Teo, B. K.; Zheng, N. F. Superatomic Au13 clusters ligated by different N-heterocyclic carbenes and their ligand-dependent catalysis, photoluminescence, and proton sensitivity. Nano Res. 2020, 13, 1908–1911.

    Article  CAS  Google Scholar 

  5. Narouz, M. R.; Osten, K. M.; Unsworth, P. J.; Man, R. W. Y.; Salorinne, K.; Takano, S.; Tomihara, R.; Kaappa, S.; Malola, S.; Dinh, C. T. et al. N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 2019, 11, 419–425.

    Article  CAS  Google Scholar 

  6. Zhu, Y. F.; Qiu, X. Y.; Zhao, S. L.; Guo, J.; Zhang, X. F.; Zhao, W. S.; Shi, Y. N.; Tang, Z. Y. Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Res. 2020, 13, 1928–1932.

    Article  CAS  Google Scholar 

  7. Higaki, T.; Zhou, M.; He, G. Y.; House, S. D.; Sfeir, M. Y.; Yang, J. C.; Jin, R. C. Anomalous phonon relaxation in Au333(SR)79 nanoparticles with nascent plasmons. Proc. Natl. Acad. Sci. USA 2019, 116, 13215–13220.

    Article  CAS  Google Scholar 

  8. Zheng, K.; Zhang, J. W.; Zhao, D.; Yang, Y.; Li, Z. M.; Li, G. Motifmediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delealization. Nano Res. 2019, 12, 501–507.

    Article  CAS  Google Scholar 

  9. Liu, X.; Xu, W. W.; Huang, X. Y.; Wang, E. D.; Cai, X.; Zhao, Y.; Li, J.; Xiao, M.; Zhang, C. F.; Gao, Y. et al. De novo design of Au36(SR)24 nanoclusters. Nat. Commun. 2020, 11, 3349.

    Article  CAS  Google Scholar 

  10. Hossain, S.; Niihori, Y.; Nair, L. V.; Kumar, B.; Kurashige, W.; Negishi, Y. Alloy clusters: Precise synthesis and mixing effects. Acc. Chem. Res. 2018, 51, 3114–3124.

    Article  CAS  Google Scholar 

  11. Wang, S. X.; Li, Q.; Kang, X.; Zhu, M. Z. Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange. Acc. Chem. Res. 2018, 51, 2784–2792.

    Article  CAS  Google Scholar 

  12. Li, Y. W.; Biswas, S.; Luo, T. Y.; Juarez-Mosqueda, R.; Taylor, M. G.; Mpourmpakis, G.; Rosi, N. L.; Hendrich, M. P.; Jin, R. C. Doping effect on the magnetism of thiolate-capped 25-atom alloy nanoclusters. Chem. Mater. 2020, 21, 9238–9244.

    Article  Google Scholar 

  13. Wang, S. X.; Song, Y. B.; Jin, S.; Liu, X.; Zhang, J.; Pei, Y.; Meng, X. M.; Chen, M.; Li, P.; Zhu, M. Z. Metal exchange method using Au25 nanoclusters as templates for alloy nanoclusters with atomic precision. J. Am. Chem. Soc. 2015, 137, 4018–4021.

    Article  CAS  Google Scholar 

  14. Ghosh, A.; Mohammed, O. F.; Bakr, O. M. Atomic-level doping of metal clusters. Acc. Chem. Res. 2018, 51, 3094–3103.

    Article  CAS  Google Scholar 

  15. Fei, W. W.; Antonello, S.; Dainese, T.; Dolmella, A.; Lahtinen, M.; Rissanen, K.; Venzo, A.; Maran, F. Metal doping of Au25(SR)18 clusters: Insights and hindsights. J. Am. Chem. Soc. 2019, 141, 16033–16045.

    Article  CAS  Google Scholar 

  16. Kwak, K.; Tang, Q.; Kim, M.; Jiang, D. E.; Lee, D. Interconversion between superatomic 6-electron and 8-electron configurations of M@Au24(SR)18 clusters (M = Pd, Pt). J. Am. Chem. Soc. 2015, 137, 10833–10840.

    Article  CAS  Google Scholar 

  17. Yao, C. H.; Lin, Y. J.; Yuan, J. Y.; Liao, L. W.; Zhu, M.; Weng, L. H.; Yang, J. L.; Wu, Z. K. Mono-cadmium vs mono-mercury doping of Au25 nanoclusters. J. Am. Chem. Soc. 2015, 137, 15350–15353.

    Article  CAS  Google Scholar 

  18. Negishi, Y.; Kurashige, W.; Niihori, Y.; Iwasa, T.; Nobusada, K. Isolation, structure, and stability of a dodecanethiolate-protected Pd1Au24 cluster. Phys. Chem. Chem. Phys. 2010, 12, 6219–6225.

    Article  CAS  Google Scholar 

  19. Li, Q.; Lambright, K. J.; Taylor, M. G.; Kirschbaum, K.; Luo, T. Y.; Zhao, J.; Mpourmpakis, G.; Mokashi-Punekar, S.; Rosi, N. L.; Jin, R. Reconstructing the surface of gold nanoclusters by cadmium doping. J. Am. Chem. Soc. 2017, 139, 17779–17782.

    Article  CAS  Google Scholar 

  20. Li, Y. W.; Luo, T. Y.; Zhou, M.; Song, Y. B.; Rosi, N. L.; Jin, R. C. A correlated series of Au/Ag nanoclusters revealing the evolutionary patterns of asymmetric Ag doping. J. Am. Chem. Soc. 2018, 140, 14235–14243.

    Article  CAS  Google Scholar 

  21. Liu, C.; Ren, X. Q.; Lin, F.; Fu, X. M.; Lin, X. Z.; Li, T.; Sun, K. J.; Huang, J. H. Structure of the Au23−xAgx(S-Adm)15 nanocluster and its application for photocatalytic degradation of organic pollutants. Angew. Chem., Int. Ed. 2019, 58, 11335–11339.

    Article  CAS  Google Scholar 

  22. Higaki, T.; Liu, C.; Morris, D. J.; He, G. Y.; Luo, T. Y.; Sfeir, M. Y.; Zhang, P.; Rosi, N. L.; Jin, R. C. Au130−xAgx nanoclusters with non-metallicity: A drum of silver-rich sites enclosed in a marksdecahedral cage of gold-rich sites. Angew. Chem., Int. Ed. 2019, 131, 18974–18978.

    Article  Google Scholar 

  23. Yan, J. Z.; Malola, S.; Hu, C. Y.; Peng, J.; Dittrich, B.; Teo, B. K.; Häkkinen, H.; Zheng, L. S.; Zheng, N. F. Co-crystallization of atomically precise metal nanoparticles driven by magic atomic and electronic shells. Nat. Commun. 2018, 9, 3357.

    Article  Google Scholar 

  24. Guan, Z. J.; Zeng, J. L.; Yuan, S. F.; Hu, F.; Lin, Y. M.; Wang, Q. M. Au57Ag53(C≡CPh)40Br12: A large nanocluster with C1 symmetry. Angew. Chem., Int. Ed. 2018, 57, 5703–5707.

    Article  CAS  Google Scholar 

  25. Zeng, J. L.; Guan, Z. J.; Du, Y.; Nan, Z. A.; Lin, Y. M.; Wang, Q. M. Chloride-promoted formation of a bimetallic nanocluster Au80Ag30 and the total structure determination. J. Am. Chem. Soc. 2016, 138, 7848–7851.

    Article  CAS  Google Scholar 

  26. Higaki, T.; Zhou, M.; Lambright, K. J.; Kirschbaum, K.; Sfeir, M. Y.; Jin, R. C. Sharp transition from nonmetallic Au246 to metallic Au279 with nascent surface plasmon resonance. J. Am. Chem. Soc. 2018, 140, 5691–5695.

    Article  CAS  Google Scholar 

  27. Chaki, N. K.; Negishi, Y.; Tsunoyama, H.; Shichibu, Y.; Tsukuda, T. Ubiquitous 8 and 29 kDa gold: Alkanethiolate cluster compounds: Mass-spectrometric determination of molecular formulas and structural implications. J. Am. Chem. Soc. 2008, 130, 8608–8610.

    Article  CAS  Google Scholar 

  28. Qian, H. F.; Jin, R. C. Controlling nanoparticles with atomic precision: The case of Au144(SCH2CH2Ph)60. Nano Lett. 2009, 9, 4083–4087.

    Article  CAS  Google Scholar 

  29. Schaaff, T. G.; Shafigullin, M. N.; Khoury, J. T.; Vezmar, I.; Whetten, R. L. Properties of a ubiquitous 29 kDa Au: SR cluster compound. J. Phys. Chem. B 2001, 105, 8785–8796.

    Article  CAS  Google Scholar 

  30. Shi, Q. Q.; Qin, Z. X.; Yu, C. L.; Liu, S.; Xu, H.; Li, G. Pyridine as a trigger in transformation chemistry from Au144(SR)60 to aromatic thiolate-ligated gold clusters. Nanoscale 2020, 12, 4982–4987.

    Article  CAS  Google Scholar 

  31. Dainese, T.; Agrachev, M.; Antonello, S.; Badocco, D.; Black, D. M.; Fortunelli, A.; Gascón, J. A.; Stener, M.; Venzo, A.; Whetten, R. L. et al. Atomically precise Au144(SR)60 nanoclusters (R = Et, Pr) are capped by 12 distinct ligand types of 5-fold equivalence and display gigantic diastereotopic effects. Chem. Sci. 2018, 9, 8796–8805.

    Article  CAS  Google Scholar 

  32. Deng, S. Y.; Li, J.; Wang, P.; Pei, Y. Origin of the structural stability of cage-like Au144 clusters. Nanoscale 2021, 13, 18134–18139.

    Article  CAS  Google Scholar 

  33. Yan, N.; Xia, N.; Liao, L. W.; Zhu, M.; Jin, F. M.; Jin, R. C.; Wu, Z. K. Unraveling the long-pursued Au144 structure by x-ray crystallography. Sci. Adv. 2018, 4, eaat7259.

    Article  CAS  Google Scholar 

  34. Lei, Z.; Li, J. J.; Wan, X. K.; Zhang, W. H.; Wang, Q. M. Isolation and total structure determination of an all-alkynyl-protected gold nanocluster Au144. Angew. Chem., Int. Ed. 2018, 57, 8639–8643.

    Article  CAS  Google Scholar 

  35. Yuan, X. T.; Malola, S.; Deng, G. C.; Chen, F. J.; Hȧkkinen, H.; Teo, B. K.; Zheng, L. S.; Zheng, N. F. Atomically precise alkynyl- and halide-protected AuAg nanoclusters Au78Ag66(C≡CPh)48Cl8 and Au74Ag60(C≡CPh)40Br12: The ligation effects of halides. Inorg. Chem. 2021, 60, 3529–3533.

    Article  CAS  Google Scholar 

  36. Dass, A.; Stevenson, A.; Dubay, G. R.; Tracy, J. B.; Murray, R. W. Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)18−x(L)x. J. Am. Chem. Soc. 2008, 130, 5940–5946.

    Article  CAS  Google Scholar 

  37. Kumara, C.; Dass, A. (AuAg)144(SR)60 alloy nanomolecules. Nanoscale 2011, 3, 3064–3067.

    Article  CAS  Google Scholar 

  38. Du, X. S.; Liu, Z. Y.; Higaki, T.; Zhou, M.; Jin, R. C. Understanding nascent plasmons and metallic bonding in atomically precise gold nanoclusters. Chem. Sci. 2022, 13, 1925–1932.

    Article  CAS  Google Scholar 

  39. Malola, S.; Lehtovaara, L.; Häkkinen, H. TDDFT analysis of optical properties of thiol monolayer-protected gold and intermetallic silver-gold Au144(SR)60 and Au84Ag60(SR)60 clusters. J. Phys. Chem. C 2014, 118, 20002–20008.

    Article  CAS  Google Scholar 

  40. Chen, S.; Higaki, T.; Ma, H. D.; Zhu, M. Z.; Jin, R. C.; Wang, G. L. Inhomogeneous quantized single-electron charging and electrochemical-optical insights on transition-sized atomically precise gold nanoclusters. ACS Nano 2020, 14, 16781–16790.

    Article  CAS  Google Scholar 

  41. Zhou, M.; Song, Y. Origins of visible and near-infrared emissions in [Au25(SR)18] nanoulueters. J. Phys. Chem. Lett. 2021, 12, 1514–1519.

    Article  CAS  Google Scholar 

  42. Zhou, M.; Higaki, T.; Hu, G. X.; Sfeir, M. Y.; Chen, Y. X.; Jiang, D. E.; Jin, R. C. Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters. Science 2019, 364, 279–282.

    Article  CAS  Google Scholar 

  43. Zhou, M.; Zeng, C. J.; Chen, Y. X.; Zhao, S.; Sfeir, M. Y.; Zhu, M. Z.; Jin, R. C. Evolution from the plasmon to exciton state in ligand-protected atomically precise gold nanoparticles. Nat. Commun. 2016, 7, 13240.

    Article  CAS  Google Scholar 

  44. Zhou, M.; Higaki, T.; Li, Y. W.; Zeng, C. J.; Li, Q.; Sfeir, M. Y.; Jin, R. C. Three-stage evolution from nonscalable to scalable optical properties of thiolate-protected gold nanoclusters. J. Am. Chem. Soc. 2019, 141, 19754–19764.

    Article  CAS  Google Scholar 

  45. Zheng, H. J.; Tofanelli, M. A.; Ackerson, C. J.; Knappenberger, K. L. Jr. Composition-dependent electronic energy relaxation dynamics of metal domains as revealed by bimetallic Au144−xAgx(SC8H9)60 monolayer-protected clusters. Phys. Chem. Chem. Phys. 2017, 19, 14471–14477.

    Article  CAS  Google Scholar 

  46. Zhou, M.; Du, X. S.; Wang, H.; Jin, R. C. The critical number of gold atoms for a metallic state nanocluster: Resolving a decades-long question. ACS Nano 2021, 15, 13980–13992.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R. J. thanks the financial support from the National Science Foundation (No. DMR-1808675). G. W. acknowledges the funding support from National Science Foundation PAPID CHE(No. 2034498). H. W. thanks the financial support from, the Air Force Office of Scientific Research (AFOSR) Nos. (FA9550-17-1-0099 and sFA9550-21-1-0192).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He Wang, Gangli Wang or Rongchao Jin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Ma, H., Zhang, X. et al. Single-electron charging and ultrafast dynamics of bimetallic Au144−xAgx(PET)60 nanoclusters. Nano Res. 15, 8573–8578 (2022). https://doi.org/10.1007/s12274-022-4445-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4445-9

Keywords

Navigation