Skip to main content
Log in

Valorization of Pine Nut Industry Residues on a Biorefinery Concept

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Pine nut industry residues, scales and core from pinecones and shells from the nuts from Pinus pinea were fully characterized. The anatomical sections showed differences between the residues. The scales presented vascular bundles with thick tracheids and narrow lumens in the xylem. The core structure presents xylem, phloem, and sclerenchyma tissues, mainly sclereids with polylamellated walls with different wall thicknesses, shapes and sizes. Nutshells presented a thickened epidermis followed by a large portion of sclereids. The chemical composition of scales and core were similar. Scales presented 0.8% ash content, 5.7% total extractives, 35.8% total lignin, and 56.8% in polysaccharides. Core showed slightly lower cell lignification (31.6% of total lignin) and higher monosaccharides content (60.1%), with 5.5% and 1.7% extractives and ashes. Nutshells had a higher lignin content (49.5%), lower content of monosaccharides (41.8%) and similar values of extractives (6.0%) and ash (1.6%). Lignin monomeric composition was similar, with a H/G ratio of 0.066 (scales), 0.039 (core) and 0.070 (nutshells). The ethanolic extracts presented low to moderate antioxidant activities in FRAP and DPPH methods. Thermal properties of the three residues were very similar; on average, the residues presented 77.1% of total volatiles, 21.9% of fixed carbon and 0.9% of ashes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or used during this study are present in this article.

References

  1. IFN6. 6º Inventário Florestal Nacional. https://www.icnf.pt/api/file/doc/c8cc40b3b7ec8541 (2015), Accessed 25th May 2022.

  2. Evaristo, I., Batista, D., Correia, I., Correia, P., Costa, R.: Chemical profiling of Portuguese Pinus pinea L. nuts. J. Sci. Food Agric. 90, 1041–1049 (2010). https://doi.org/10.1002/jsfa.3914

    Article  Google Scholar 

  3. Losada, J.M., Blanco-Moure, N., Leslie, A.B.: Not all ‘pine cones’ flex: functional trade-offs and the evolution of seed release mechanisms. New Phytol. 222, 396–407 (2019). https://doi.org/10.1111/nph.15563

    Article  Google Scholar 

  4. Bae, H., Kim, J.: Functional principles of morphological and anatomical structures in pinecones. Plants. 9, 1343 (2020). https://doi.org/10.3390/plants9101343

    Article  Google Scholar 

  5. Correa, D., Poppinga, S., Mylo, M.D., Westermeier, A.S., Bruchmann, B., Menges, A., Speck, T.: 4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philos. Trans. R Soc. A Math. Phys. Eng. Sci. 378, 20190445 (2020). https://doi.org/10.1098/rsta.2019.0445

    Article  Google Scholar 

  6. Queirós, C.S.G.P., Cardoso, S., Lourenço, A., Ferreira, J., Miranda, I., Lourenço, M.J.V., Pereira, H.: Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Convers. Biorefinery. 10, 175–188 (2020). https://doi.org/10.1007/s13399-019-00424-2

    Article  Google Scholar 

  7. Dönmez, I.E., Hafizoğlu, H., Killic, A., Tümen, I., Sivrikaya, H.: Chemical composition of fourteen different coniferous species cones growing naturally in Turkey. Wood Res. 57(2), 339–344 (2012)

    Google Scholar 

  8. Gonultas, O., Balaban Ucar, M.: Characteristics of pinus. Lignocellulose 2, 262–269 (2013)

    Google Scholar 

  9. Ayrilmis, N., Buyuksari, U., Avci, E., Koc, E.: Utilization of pine (Pinus pinea L.) cone in manufacture of wood based composite. For. Ecol. Manag. 259, 65–70 (2009). https://doi.org/10.1016/j.foreco.2009.09.043

    Article  Google Scholar 

  10. Buyuksari, U., Ayrilmis, N., Avci, E., Koc, E.: Evaluation of the physical, mechanical properties and formaldehyde emission of particleboard manufactured from waste stone pine (Pinus pinea L.) cones. Bioresour. Technol. 101, 255–259 (2010). https://doi.org/10.1016/j.biortech.2009.08.038

    Article  Google Scholar 

  11. García-García, D., Balart, R., Lopez-Martinez, J., Ek, M., Moriana, R.: Optimizing the yield and physico-chemical properties of pine cone cellulose nanocrystals by different hydrolysis time. Cellulose 25, 2925–2938 (2018). https://doi.org/10.1007/S10570-018-1760-0/FIGURES/5

    Article  Google Scholar 

  12. Ucun, H., Bayhan, Y.K., Kaya, Y., Cakici, A., Faruk Algur, O.: Biosorption of chromium(VI) from aqueous solution by cone biomass of Pinus sylvestris. Bioresour. Technol. 85, 155–158 (2002). https://doi.org/10.1016/S0960-8524(02)00086-X

    Article  Google Scholar 

  13. Koubaissy, B., Toufaily, J., Cheikh, S., Hassan, M.S., Hamieh, T.: Valorization of agricultural waste into activated carbons and its adsorption characteristics for heavy metals. Cent. Eur. J. Eng. 4, 90–99 (2014). https://doi.org/10.2478/s13531-013-0148-z

    Article  Google Scholar 

  14. Gulsoy, S.K., Ozturk, F.: Kraft pulping properties of European black pine cone. Maderas Cienc y Tecnol. (2015). https://doi.org/10.4067/S0718-221X2015005000076

    Article  Google Scholar 

  15. Naushad, M., Ali Khan, M., Abdullah Alothman, Z., Rizwan Khan, M., Kumar, M.: Adsorption of methylene blue on chemically modified pine nut shells in single and binary systems: isotherms, kinetics, and thermodynamic studies. Desalin. Water Treat. 57, 15848–15861 (2016). https://doi.org/10.1080/19443994.2015.1074121

    Article  Google Scholar 

  16. Uçar, S., Karagöz, S.: Co-pyrolysis of pine nut shells with scrap tires. Fuel 137, 85–93 (2014). https://doi.org/10.1016/j.fuel.2014.07.082

    Article  Google Scholar 

  17. Barbosa, A.C.F., Pace, M.R., Witovisk, L., Angyalossy, V.: A new method to obtain good anatomical slides of heterogeneous plant parts. IAWA J. 31, 373–383 (2010). https://doi.org/10.1163/22941932-90000030

    Article  Google Scholar 

  18. Miranda, I., Lima, L., Quilhó, T., Knapic, S., Pereira, H.: The bark of Eucalyptus sideroxylon as a source of phenolic extracts with anti-oxidant properties. Ind. Crops Prod. 82, 81–87 (2016). https://doi.org/10.1016/j.indcrop.2015.12.003

    Article  Google Scholar 

  19. Ferreira, J.P.A., Miranda, I., Gominho, J., Pereira, H.: Selective fractioning of Pseudotsuga menziesii bark and chemical characterization in view of an integrated valorization. Ind. Crops Prod. 74, 998–1007 (2015). https://doi.org/10.1016/j.indcrop.2015.05.065

    Article  Google Scholar 

  20. Scherer, R., Godoy, H.T.: Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 112, 654–658 (2009). https://doi.org/10.1016/j.foodchem.2008.06.026

    Article  Google Scholar 

  21. Faix, O., Meier, D., Fortmann, I.: Thermal degradation products of wood. Holz als Roh- und Werkst. 48, 281–285 (1990). https://doi.org/10.1007/BF02626519

    Article  Google Scholar 

  22. Ralph, J., Hatfield, R.D.: Pyrolysis-GC-MS characterization of forage materials. J. Agric. Food Chem. 39, 1426–1437 (1991). https://doi.org/10.1021/jf00008a014

    Article  Google Scholar 

  23. Le Duigou, A., Castro, M.: Evaluation of force generation mechanisms in natural, passive hydraulic actuators. Sci. Rep. 6, 18105 (2016). https://doi.org/10.1038/srep18105

    Article  Google Scholar 

  24. Pereira, H., Graca, J., Rodrigues, J.C.: Wood Chemistry in Relation to Quality. ChemInform (2004). https://doi.org/10.1002/CHIN.200446298

    Article  Google Scholar 

  25. Nergiz, C., Dönmez, I.: Chemical composition and nutritive value of Pinus pinea L. seeds. Food Chem. 86, 365–368 (2004). https://doi.org/10.1016/j.foodchem.2003.09.009

    Article  Google Scholar 

  26. Lourenço, A., Pereira, H.: Compositional variability of lignin in biomass. Lignin—Trends Appl. (2018). https://doi.org/10.5772/INTECHOPEN.71208

    Article  Google Scholar 

  27. Lourenço, A., Gominho, J., Pereira, H.: Chemical characterization of lignocellulosic materials by analytical pyrolysis. Anal. Pyrolysis. (2018). https://doi.org/10.5772/INTECHOPEN.80556

    Article  Google Scholar 

  28. Eberhardt, T.L., Young, R.A.: Characterization of conifer seed cone polysaccharides and lignin. Holzforschung 50, 401–407 (1996). https://doi.org/10.1515/hfsg.1996.50.5.401

    Article  Google Scholar 

  29. Sousa, J.L.C., Ramos, P.A.B., Freire, C.S.R., Silva, A.M.S., Silvestre, A.J.D.: Chemical composition of lipophilic bark extracts from Pinus pinaster and Pinus pinea cultivated in Portugal. Appl. Sci. 8, 2575 (2018). https://doi.org/10.3390/app8122575

    Article  Google Scholar 

  30. Lazar, L., Talmaciu, A.I., Volf, I., Popa, V.I.: Kinetic modeling of the ultrasound-assisted extraction of polyphenols from Picea abies bark. Ultrason. Sonochem. 32, 191–197 (2016). https://doi.org/10.1016/j.ultsonch.2016.03.009

    Article  Google Scholar 

  31. Zulaica-Villagomez, H., Peterson, D.M., Herrin, L., Young, R.A.: Antioxidant activity of different components of pine species. Holzforschung 59, 156–162 (2005). https://doi.org/10.1515/HF.2005.024

    Article  Google Scholar 

  32. White, R.: Effect of lignin content and extractives on the higher heating value of wood. Wood Fiber Sci. 19, 446–452 (1987)

    Google Scholar 

  33. Rowell, R.M.: Handbook of Wood Chemistry and Wood Composites. CRC Press, Boca Raton (2005). https://doi.org/10.1201/9780203492437

    Book  Google Scholar 

  34. Pandey, K.K.: A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci. 71, 1969–1975 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990321)71:12%3c1969::AID-APP6%3e3.0.CO;2-D

    Article  Google Scholar 

  35. Schwanninger, M., Rodrigues, J.C., Pereira, H., Hinterstoisser, B.: Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 36, 23–40 (2004). https://doi.org/10.1016/j.vibspec.2004.02.003

    Article  Google Scholar 

  36. ENplus ® Standard ENplus ® wood pellets-requirements for companies. https://www.enplus-pellets.eu/en-in/component/attachments/?task=download&id=697:ENplus-ST-1001---ENplus-wood-pellets--Requirements-for-companies (2022), Accessed 12 Jan 2023.

  37. Lee, T.K., Roh, H.S., Yu, J.S., Baek, J., Lee, S., Ra, M., Kim, S.Y., Baek, K.H., Kim, K.H.: Pinecone of Pinus koraiensis inducing apoptosis in human lung cancer cells by activating caspase-3 and its chemical constituents. Chem. Biodivers. (2017). https://doi.org/10.1002/CBDV.201600412

    Article  Google Scholar 

  38. Yi, J., Qu, H., Wu, Y., Wang, Z., Wang, L.: Study on antitumor, antioxidant and immunoregulatory activities of the purified polyphenols from pinecone of Pinus koraiensis on tumor-bearing S180 mice in vivo. Int. J. Biol. Macromol. 94, 735–744 (2017). https://doi.org/10.1016/J.IJBIOMAC.2016.10.071

    Article  Google Scholar 

  39. Yi, J., Wang, Z., Bai, H., Yu, X., Jing, J., Zuo, L.: Optimization of purification, identification and evaluation of the in vitro antitumor activity of polyphenols from Pinus koraiensis pinecones. Molecules 20, 10450–10467 (2015). https://doi.org/10.3390/MOLECULES200610450

    Article  Google Scholar 

  40. Bhatia, L., Sharma, A., Bachheti, R.K., Chandel, A.K.: Lignocellulose derived functional oligosaccharides: production, properties, and health benefits. Prep. Biochem. Biotechnol. 49, 744–758 (2019). https://doi.org/10.1080/10826068.2019.1608446

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Miguel Figueiredo and PineFlavour for providing the Pinus pinea residues used in this study and Marta Martins for the thermogravimetric data acquisition. This work was supported by FCT (Fundação para a Ciência e Tecnologia, Portugal) by financing the Forest Research Center (UIDB/00239/2020 and UIDP/00239/2021). FCT supported Ana Lourenço through a research contract (DL 57/2016/CP1382/CT0007) and Ricardo Costa through a doctoral fellowship with reference 2020.07451.BD.

Funding

This study was supported by Fundação para a Ciência e a Tecnologia (Grant Nos. UIDB/00239/2020, UIDP/00239/2021, DL 57/2016/CP1382/CT0007, 2020.07451.BD).

Author information

Authors and Affiliations

Authors

Contributions

RAC—Conceptualization, Methodology, Investigation, Data analysis, Writing—original draft, Writing—review and editing. AL—Conceptualization, Data analysis, Writing—review and editing, Funding acquisition, Supervision. HP—Methodology, Writing—review and editing. TQ—Methodology, Writing—review and editing. JG—Conceptualization, Data analysis, Writing—review and editing, Resources, Supervision, Funding acquisition.

Corresponding author

Correspondence to Ricardo A. Costa.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or personal relationships that could have any influence in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, R.A., Lourenço, A., Patrício, H. et al. Valorization of Pine Nut Industry Residues on a Biorefinery Concept. Waste Biomass Valor 14, 4081–4099 (2023). https://doi.org/10.1007/s12649-023-02068-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02068-w

Keywords

Navigation