Abstract
As one of the functions integrating energy management systems, state estimation (SE) is instrumental in monitoring power networks, allowing the best possible use of energy resources. It plays a decisive role in debugging if sufficient data are available, ruined if not. Criticality analysis (CA) integrates SE as a module in which elements of the estimation process—taken one-by-one or grouped (tuples of minimal multiple cardinality)—are designated essential. The combinatorial nature of extensive CA (ExtCA), derestricted from identifying only low-cardinality critical tuples, characterizes its computational complexity and imposes defiant limits in implementing it. This paper presents the methodology for ExtCA and compares algorithms to find an efficient solution for expanding the boundaries of this analysis problem. The algorithms used for comparison are one sequential Branch&Bound (a well-known paradigm for combinatorial optimization recently used in ExtCA) and two new parallels implemented on the central processing unit (CPU) and the graphics processing unit (GPU). The conceived parallel architecture favors evaluating massive combinations of diverse cardinality measuring unit (MU) tuples in ExtCA. The acronym MU refers to the aggregate of devices deployed at substations, such as a remote terminal unit, intelligent electronic device, and phasor measurement unit. The numerical results obtained in the paper show significant speed-ups with the novel parallel GPU algorithm, tested on different and real-scale power grids. Since, the visualization of the ExtCA results is still not a well-explored field, this work also presents a novel way of graphically depicting spots of weak observability using MU-oriented ExtCA.







Similar content being viewed by others
References
Abur, A., & Gómez Expósito, A. (2004). Power system state estimation: Theory and implementation. Marcel Dekker.
Augusto, A. A., Do Coutto Filho, M. B., Stacchini de Souza, J. C., & Miranda, V. (2016). Probabilistic assessment of state estimation capabilities for grid observation. IET Generation, Transmission & Distribution, 10(12), 2933–2941. https://doi.org/10.1049/iet-gtd.2015.1406
Augusto, A. A., Do Coutto Filho, M. B., Stacchini de Souza, J. C., & Guimaraens, M. A. R. (2019). Branch-and-Bound guided search for critical elements in state estimation. IEEE Transactions on Power Systems, 34(3), 2292–2301. https://doi.org/10.1109/TPWRS.2018.2881421
Braga Flôr, V. B., Do Coutto Filho, M. B., Stacchini de Souza, J. C., & Augusto, A. A. (2021). Tactics for improving computational performance of criticality analysis in state estimation. IET Generation, Transmission & Distribution, 15(7), 1214–1226. https://doi.org/10.1049/gtd2.12097
Braga Flôr, V. B., Do Coutto Filho, M. B., Stacchini de Souza, J. C., & Vergara, P. P. (2023). Critical data visualization to enhance protection schemes for state estimation. IEEE Transactions on Smart Grid, 14(2), 1249–1261. https://doi.org/10.1109/TSG.2022.3203404
Braga Flôr, V. B., Do Coutto Filho, M. B., Stacchini de Souza, J. C., & Satoru Ochi, L. (2022). Strategic observation of power grids for reliable monitoring. International Journal of Electrical Power & Energy Systems, 138, 107959. https://doi.org/10.1016/j.ijepes.2022.107959
Chakati, V., Pore, M., Banerjee, A., Pal, A., & Gupta, S. K. S. (2018). Impact of false data detection on cloud hosted linear state estimator performance. In 2018 IEEE power & energy society general meeting (PESGM) (pp. 1–5). https://doi.org/10.1109/PESGM.2018.8586671
Cheng, G., Lin, Y., Abur, A., Gómez-Expósito, A., & Wu, W. (2024). A survey of power system state estimation using multiple data sources: PMUs, SCADA, AMI, and beyond. IEEE Transactions on Smart Grid, 15(1), 1129–1151. https://doi.org/10.1109/TSG.2023.3286401
Christie, R. (1993). Power systems test case archive. https://electricgrids.engr.tamu.edu/electric-grid-test-cases/ieee-300-bus-system
Cisneros-Magaña, R., Medina, A., Dinavahi, V., & Ramos-Paz, A. (2018). Time-domain power quality state estimation based on Kalman filter using parallel computing on graphics processing units. IEEE Access, 6, 21152–21163. https://doi.org/10.1109/ACCESS.2018.2823721
Clements, K. A., & Davis, P. W. (1986). Multiple bad data detectability and identifiability: A geometric approach. IEEE Transactions on Power Delivery, 1(3), 355–360. https://doi.org/10.1109/TPWRD.1986.4308015
Do Coutto Filho, M. B., Stacchini de Souza, J., & Augusto, A. A. (2014). Critical measuring units for state estimation. In 2014 power systems computation conference (pp. 1–7). https://doi.org/10.1109/PSCC.2014.7038472
Do Coutto Filho, M. B. (2024). Power system state estimation and forecasting: Fundamentals and advanced topics. Springer.
Do Coutto Filho, M. B., Stacchini de Souza, J., Braga Flôr, V. B., & Oliveira-Neto, R. R. (2022). Reciprocity in state estimation criticality analysis. Electric Power Systems Research, 211, 108385. https://doi.org/10.1016/j.epsr.2022.108385
Do Coutto Filho, M. B., Stacchini de Souza, J., & Glover, J. D. (2019). Roots, achievements, and prospects of power system state estimation: A review on handling corrupted measurements. International Transactions on Electrical Energy Systems, 29(4), e2779. https://doi.org/10.1002/etep.2779
Do Coutto Filho, M. B., Stacchini de Souza, J. C., & Villavicencio Tafur, J. E. (2013). Quantifying observability in state estimation. IEEE Transactions on Power Systems, 28(3), 2897–2906. https://doi.org/10.1109/TPWRS.2013.2241459
Er, M. C. (1988). A parallel algorithm for cost-optimal generation of permutations of r out of n items. Journal Information and Optimization Sciences, 9(1), 53–56. https://doi.org/10.1080/02522667.1988.10698905
Fu, M., Li, Y., Hua, J., Feng, Y., & Zheng, Y. (2021). GPU-accelerated state estimation for large-scale power systems. In 2021 international conference on green energy, computing and sustainable technology (GECOST) (pp. 1–5). https://doi.org/10.1109/GECOST52368.2021.9538652
Gonzalez-Perez, C., & Wollenberg, B. F. (2001). Analysis of massive measurement loss in large-scale power system state estimation. IEEE Transactions on Power Systems, 16(4), 825–832. https://doi.org/10.1109/59.962433
Gou, B., & Abur, A. (2000). A direct numerical method for observability analysis. IEEE Transactions on Power Systems, 15(2), 625–630. https://doi.org/10.1109/59.867151
Gou, B., & Shue, D. (2023). Advances in algorithms for power system static state estimators: An improved solution for bad data management and state estimator convergence. IEEE Power and Energy Magazine, 21(1), 16–25. https://doi.org/10.1109/MPE.2022.3219168
Korres, G. N. (2011). An integer-arithmetic algorithm for observability analysis of systems with SCADA and PMU measurements. Electric Power Systems Research, 81(7), 1388–1402. https://doi.org/10.1016/j.epsr.2011.02.005
Liang, G., Zhao, J., Luo, F., Weller, S. R., & Dong, Z. Y. (2017). A review of false data injection attacks against modern power systems. IEEE Transactions Smart Grid, 8(4), 1630–1638. https://doi.org/10.1109/TSG.2015.2495133
Lin, Y., Abur, A., & Xu, H. (2020). Secure market operation in presence of critical model parameters in state estimation. Journal of Modern Power Systems and Clean Energy, 8(4), 699–708. https://doi.org/10.35833/MPCE.2020.000007
Mantesso Coimbra, A., Stacchini de Souza, J. C., Do Coutto Filho, M. B., & Augusto, A. A. (2021). Network-based approach to identify criticalities in state estimation. IEEE Transactions on Power Systems, 36(4), 3394–3405. https://doi.org/10.1109/TPWRS.2021.3055122
Monticelli, A. (1999). Power system state estimation: A generalized approach. Kluwer Academic Publishers.
Neapolitan, R. E. (2015). Foundations of algorithms (5th ed.). Jones & Bartelett.
Nishio, A., Clua, E. W. G., Do Coutto Filho, M. B., & Stacchini de Souza, J. C. (2020). GPU-based criticality analysis applied to power system state estimation. Computational science and its applications–ICCSA 2020 (Vol. 12251, pp. 121–133). Springer. https://doi.org/10.1007/978-3-030-58808-3_10
Nishio, A., Do Coutto Filho, M. B., Stacchini de Souza, J. C., & Clua, E. W. G. (2024). GPU parallel processing to enable extensive criticality analysis in state estimation. Concurrency and Computation: Practice and Experience, 36(20), e8200.
Phadke, G., & Thorp, J. S. (2017). Synchronized phasor measurements and their applications (2nd ed.). Springer. https://doi.org/10.1007/978-3-319-50584-8
Rahman, M. A., & Venayagamoorthy, G. K. (2020). Dishonest Gauss-Newton method-based power system state estimation on a GPU. Advances in electric power and energy: Static state estimation (pp. 455–474). IEEE.
Ruskey, F., & Williams, A. (2009). The coolest way to generate combinations. Discrete Mathematics, 309(17), 5305–5320. https://doi.org/10.1016/j.disc.2007.11.048
Simões Costa, A., Piazza, T. S., & Mandel, A. (1990). Qualitative methods to solve qualitative problems in power system state estimation. IEEE Transactions on Power Systems, 5(3), 941–949. https://doi.org/10.1109/59.65924
Snodgrass, J., Kunkolienkar, S., Habiba, U., Liu, Y., Stevens, M., Safdarian, F., Overbye, T., & Korab, R. (2022). Case study of enhancing the MATPOWER Polish electric grid. In 2022 IEEE Texas power and energy conference (TPEC) (pp. 1–6). https://doi.org/10.1109/TPEC54980.2022.9750807
Sou, K. C., Sandberg, H., & Johansson, K. H. (2012). Computing critical k-tuples in power networks. IEEE Transactions on Power Systems, 27(3), 1511–1520. https://doi.org/10.1109/TPWRS.2012.2187685
Acknowledgments
CNPq, CAPES, INERGE, and INESC TEC partly support this work.
Funding
INESC TEC Porto
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nishio, A., Do Coutto Filho, M.B., Stacchini de Souza, J.C. et al. State Estimation Extensive Criticality Analysis Performed on Measuring Units: A Comparative Study. J Control Autom Electr Syst 35, 1135–1146 (2024). https://doi.org/10.1007/s40313-024-01130-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40313-024-01130-9