Skip to main content

Advertisement

Log in

A Review on Bio-functionalization of β-Ti Alloys

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

β-Ti alloys are known for their very low Young’s modulus, excellent physical properties, and biocompatibility, hence they are considered as attractive metallic materials for long-term bone implant applications. However, β-Ti alloys are poor wear resistant and typically bioinert materials, thus their surfaces need to be modified to have wear resistant and bioactive properties. In this paper, an overview is given to the available surface functionalization techniques to improve the biological properties of β-Ti alloys. Mechanical, physical, chemical, and electrochemical treatments, as well the immobilization of bio-functional molecules are discussed. Bioactivity, biocompatibility, haemocompatibility, wear and/or corrosion, behaviour of the β-Ti alloys can be improved using a proper surface modification technique, by altering the surface composition and topography or removing the undesired material from the alloy surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mihov D, Katerska B (2010) Some biocompatible materials used in medical practice. Trakia J Sci 8:119–125. https://doi.org/10.2320/matertrans.L-MRA2008828

    Article  CAS  Google Scholar 

  2. Pandey E, Srivastava K, Gupta S, Srivastava S, Mishra N (2016) Some biocompatible materials used in medical practices—a review. Int J Pharm Sci Res 7:2748–2755

    CAS  Google Scholar 

  3. Niinomi M (2002) Recent metallic materials for biomedical applications. Metall Mater Trans A 33:477–486. https://doi.org/10.1007/s11661-002-0109-2

    Article  Google Scholar 

  4. Niinomi M (2008) Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 1:30–42. https://doi.org/10.1016/j.jmbbm.2007.07.001

    Article  Google Scholar 

  5. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog Mater Sci 54:397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  CAS  Google Scholar 

  6. Correa DRN, Vicente FB, Donato TAG, Arana-Chavez VE, Buzalaf MAR, Grandini CR (2014) The effect of the solute on the structure, selected mechanical properties, and biocompatibility of Ti–Zr system alloys for dental applications. Mater Sci Eng C 34:354–359. https://doi.org/10.1016/j.msec.2013.09.032

    Article  CAS  Google Scholar 

  7. Kirmanidou Y, Sidira M, Drosou M-E, Bennani V, Bakopoulou A, Tsouknidas A, Michailidis N, Michalakis K (2016) New Ti-alloys and surface modifications to improve the mechanical properties and the biological response to orthopedic and dental implants: a review. Biomed Res Int 2016:1–21. https://doi.org/10.1155/2016/2908570

    Article  CAS  Google Scholar 

  8. Okazaki Y (2001) A new Ti–15Zr–4Nb–4Ta alloy for medical applications. Curr Opin Solid State Mater Sci 5:45–53. https://doi.org/10.1016/S1359-0286(00)00025-5

    Article  CAS  Google Scholar 

  9. Godley R, Starosvetsky D, Gotman I (2006) Corrosion behavior of a low modulus β-Ti-45 % Nb alloy for use in medical implants. J Mater Sci Med 17:63–67. https://doi.org/10.1007/s10856-006-6330-6

    Article  CAS  Google Scholar 

  10. Perl DP (1985) Relationship of aluminum to Alzheimer’s disease. Environ Health Perspect 63:149–153. https://doi.org/10.1289/ehp.8563149

    Article  CAS  Google Scholar 

  11. Boyer R, Welsch G (1994) Materials properties handbook: titanium alloys. ASM International, Materials Park, OH

    Google Scholar 

  12. Niinomi M (1998) Mechanical properties of biomedical titanium alloys. Mater Sci Eng A 243:231–236. https://doi.org/10.1016/S0921-5093(97)00806-X

    Article  Google Scholar 

  13. Department of Health and Human Services (2008) Public health statement for aluminum, agency toxic substances and disease registry 9. https://www.atsdr.cdc.gov/phs/phs.asp?id=1076&tid=34

  14. Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T (1998) Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng A 243(243):244–249. https://doi.org/10.1016/S0921-5093(97)00808-3

    Article  Google Scholar 

  15. Long M, Rack HJ (1998) Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19:1621–1639. https://doi.org/10.1016/S0142-9612(97)00146-4

    Article  CAS  Google Scholar 

  16. Niinomi M (2003) Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4.6Zr. Biomaterials 24:2673–2683. https://doi.org/10.1016/S0142-9612(03)00069-3

    Article  CAS  Google Scholar 

  17. Evans FG (1976) Mechanical properties and histology of cortical bone from younger and older men. Anat Rec 185:1–11. https://doi.org/10.1002/ar.1091850102

    Article  CAS  Google Scholar 

  18. Brunette DM, Tengvall P, Textor M, Thomsen P (2001) Material science, surface science, engineering, biological responses and medical applications. Titanium in medicine, vol 49. Springer, Berlin, p 69126. https://doi.org/10.1007/978-3-642-56486-4

    Chapter  Google Scholar 

  19. Ho WF, Ju CP, Chern Lin JH (1999) Structure and properties of cast binary Ti–Mo alloys. Biomaterials 20:2115–2122. https://doi.org/10.1016/S0142-9612(99)00114-3

    Article  CAS  Google Scholar 

  20. Raabe D, Sander B, Friák M, Ma D, Neugebauer J (2007) Theory-guided bottom-up design of β-titanium alloys as biomaterials based on first principles calculations: theory and experiments. Acta Mater 55:4475–4487. https://doi.org/10.1016/j.actamat.2007.04.024

    Article  CAS  Google Scholar 

  21. Cimpean A, Mitran V, Ciofrangeanu CM, Galateanu B, Bertrand E, Gordin DM, Iordachescu D, Gloriant T (2012) Osteoblast cell behavior on the new beta-type Ti–25Ta–25Nb alloy. Mater Sci Eng C 32:1554–1563. https://doi.org/10.1016/j.msec.2012.04.042

    Article  CAS  Google Scholar 

  22. Ikeda M, Komatsu S-Y, Sowa I, Niinomi M (2002) Aging behavior of the Ti–29Nb–13Ta–4.6Zr new beta alloy for medical implants. Metall Mater Trans A 33:487–493. https://doi.org/10.1007/s11661-002-0110-9

    Article  Google Scholar 

  23. Niinomi M, Hattori T, Morikawa K, Kasuga T, Suzuki A, Fukui H, Niwa S (2002) Development of low rigidity β-type titanium alloy for biomedical applications. Mater Trans 43:2970–2977. https://doi.org/10.2320/matertrans.43.2970

    Article  CAS  Google Scholar 

  24. Gordin DM, Gloriant T, Nemtoi G, Chelariu R, Aelenei N, Guillou A, Ansel D (2005) Synthesis, structure and electrochemical behavior of a beta Ti–12Mo–5Ta alloy as new biomaterial. Mater Lett 59:2959–2964. https://doi.org/10.1016/j.matlet.2004.09.064

    Article  CAS  Google Scholar 

  25. Qazi JI, Rack HJ (2005) Metastable beta titanium alloys for orthopedic applications. Adv Eng Mater 7:993–998. https://doi.org/10.1002/adem.200500060

    Article  CAS  Google Scholar 

  26. Banerjee R, Nag S, Fraser H (2005) A novel combinatorial approach to the development of beta titanium alloys for orthopaedic implants. Mater Sci Eng C 25:282–289. https://doi.org/10.1016/j.msec.2004.12.010

    Article  CAS  Google Scholar 

  27. Nag S, Banerjee R, Fraser HL (2005) Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2004.12.013

    Article  Google Scholar 

  28. Elias LM, Schneider SG, Schneider S, Silva HM, Malvisi F (2006) Microstructural and mechanical characterization of biomedical Ti–Nb–Zr(–Ta) alloys. Mater Sci Eng A 432:108–112. https://doi.org/10.1016/j.msea.2006.06.013

    Article  CAS  Google Scholar 

  29. Gloriant T, Texier G, Prima F, Laillé D, Gordin DM, Thibon I, Ansel D (2006) Synthesis and phase transformations of beta metastable Ti-based alloys containing biocompatible Ta, Mo and Fe beta-stabilizer elements. Adv Eng Mater 8:961–965. https://doi.org/10.1002/adem.200600106

    Article  CAS  Google Scholar 

  30. Abdel-Hady M, Hinoshita K, Morinaga M (2006) General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr Mater 55:477–480. https://doi.org/10.1016/j.scriptamat.2006.04.022

    Article  CAS  Google Scholar 

  31. Matsuno H, Yokoyama A, Watari F, Uo M, Kawasaki T (2001) Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 22:1253–1262. https://doi.org/10.1016/S0142-9612(00)00275-1

    Article  CAS  Google Scholar 

  32. Eisenbarth E, Velten D, Müller M, Thull R, Breme J (2004) Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials 25:5705–5713. https://doi.org/10.1016/j.biomaterials.2004.01.021

    Article  CAS  Google Scholar 

  33. Niinomi M (2007) Recent research and development in metallic materials for biomedical, dental and healthcare products applications. In: THERMEC 2006. Trans Tech Publications, pp 193–200. https://doi.org/10.4028/www.scientific.net/MSF.539-543.193

  34. More NS, Paul SN, Roy M (2018) Electrochemical corrosion behaviour of Ti–29Nb–13Ta–4.6Zr alloy in physiological solution containing various synovial joint lubricants. J. Bio Tribo Corros. https://doi.org/10.1007/s40735-018-0156-x

    Article  Google Scholar 

  35. Çaha I, Alves A, Chirico C, Pinto A, Tsipas S, Gordo E, Toptan F (2020) Corrosion and tribocorrosion behavior of Ti–40Nb and Ti–25Nb–5Fe alloys processed by powder metallurgy. Metall Mater Trans A 51:3256–3267. https://doi.org/10.1007/s11661-020-05757-6

    Article  CAS  Google Scholar 

  36. Niinomi M (2008) Biologically and mechanically biocompatible titanium alloys. Mater Trans 49:2170–2178. https://doi.org/10.2320/matertrans.L-MRA2008828

    Article  CAS  Google Scholar 

  37. Niinomi M, Ogawa M, Kinoshita T, Ikeda M, Ueda M (2012) Influence of Fe content of Ti–Mn–Fe alloys on phase constitution and heat treatment behavior. In: THERMEC 2011. Trans Tech Publications, pp 1893–1898. https://doi.org/10.4028/www.scientific.net/MSF.706-709.1893

  38. Hosoda H, Kyogoku H, Ashida S (2012) Fabrication of Ti–Sn–Cr shape memory alloy by PM process and its properties. In: THERMEC 2011. Trans Tech Publications, pp 1943–1947. https://doi.org/10.4028/www.scientific.net/MSF.706-709.1943

  39. Griza S, de Souza Sá DHG, Batista WW, de Blas JCG, Pereira LC (2014) Microstructure and mechanical properties of hot rolled TiNbSn alloys. Mater Des 56:200–208. https://doi.org/10.1016/j.matdes.2013.10.067

    Article  CAS  Google Scholar 

  40. Niinomi M, Liu Y, Nakai M, Liu H, Li H (2016) Biomedical titanium alloys with Young’s moduli close to that of cortical bone. Regen Biomater 3:173–185. https://doi.org/10.1093/rb/rbw016

    Article  CAS  Google Scholar 

  41. Akahori T, Niinomi M, Fukui H, Ogawa M, Toda H (2005) Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2004.12.007

    Article  Google Scholar 

  42. Wang G, Hui S, Ye W, Mi X, Wang Y, Zhang W (2012) Microstructure and tensile properties of low cost titanium alloys at different cooling rate. Rare Met 31:531–536. https://doi.org/10.1007/s12598-012-0552-1

    Article  CAS  Google Scholar 

  43. Yilmazer H, Niinomi M, Nakai M, Hieda J, Todaka Y, Akahori T, Miyazaki T (2012) Heterogeneous structure and mechanical hardness of biomedical β-type Ti–29Nb–13Ta–4.6Zr subjected to high-pressure torsion. J Mech Behav Biomed Mater 10:235–245. https://doi.org/10.1016/j.jmbbm.2012.02.022

    Article  CAS  Google Scholar 

  44. Yilmazer H, Niinomi M, Nakai M, Cho K, Hieda J, Todaka Y, Miyazaki T (2013) Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion. Mater Sci Eng C 33:2499–2507. https://doi.org/10.1016/j.msec.2013.01.056

    Article  CAS  Google Scholar 

  45. Tian Y, Yu Z, Ong CYA, Kent D, Wang G (2015) Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents. J Mech Behav Biomed Mater 45:132–141. https://doi.org/10.1016/j.jmbbm.2015.02.001

    Article  CAS  Google Scholar 

  46. Mohammed MT, Khan ZA, Geetha M, Siddiquee AN (2015) Microstructure, mechanical properties and electrochemical behavior of a novel biomedical titanium alloy subjected to thermo-mechanical processing including aging. J Alloys Compd 634:272–280. https://doi.org/10.1016/j.jallcom.2015.02.095

    Article  CAS  Google Scholar 

  47. Li YY, Zou LM, Yang C, Li YH, Li LJ (2013) Ultrafine-grained Ti-based composites with high strength and low modulus fabricated by spark plasma sintering. Mater Sci Eng A 560:857–861. https://doi.org/10.1016/j.msea.2012.09.047

    Article  CAS  Google Scholar 

  48. Datta S, Mahfouf M, Zhang Q, Chattopadhyay PP, Sultana N (2016) Imprecise knowledge based design and development of titanium alloys for prosthetic applications. J Mech Behav Biomed Mater 53:350–365. https://doi.org/10.1016/j.jmbbm.2015.08.039

    Article  CAS  Google Scholar 

  49. Geng F, Niinomi M, Nakai M (2011) Observation of yielding and strain hardening in a titanium alloy having high oxygen content. Mater Sci Eng A 528:5435–5445. https://doi.org/10.1016/j.msea.2011.03.064

    Article  CAS  Google Scholar 

  50. Niinomi M, Nakai M (2012) Unusual effect of oxygen on the mechanical behavior of a β-type titanium alloy developed for biomedical applications. Mater Sci Forum 706–709:135–142. https://doi.org/10.4028/www.scientific.net/MSF.706-709.135

    Article  CAS  Google Scholar 

  51. Manivasagam G, Dhinasekaran D, Rajamanickam A (2010) Biomedical implants: corrosion and its prevention—a review, recent patents. Corros Sci 2:40–54. https://doi.org/10.2174/1877610801002010040

    Article  CAS  Google Scholar 

  52. Han MK, Kim JY, Hwang MJ, Song HJ, Park YJ (2015) Effect of Nb on the microstructure, mechanical properties, corrosion behavior, and cytotoxicity of Ti–Nb alloys. Materials (Basel) 8:5986–6003. https://doi.org/10.3390/ma8095287

    Article  CAS  Google Scholar 

  53. Bai Y, Deng Y, Zheng Y, Li Y, Zhang R, Lv Y, Zhao Q, Wei S (2016) Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium–niobium alloy with low Young’s modulus. Mater Sci Eng C 59:565–576. https://doi.org/10.1016/j.msec.2015.10.062

    Article  CAS  Google Scholar 

  54. Bai YJ, Wang YB, Cheng Y, Deng F, Zheng YF, Wei SC (2011) Comparative study on the corrosion behavior of Ti–Nb and TMA alloys for dental application in various artificial solutions. Mater Sci Eng C 31:702–711. https://doi.org/10.1016/j.msec.2010.12.010

    Article  CAS  Google Scholar 

  55. Biesiekierski A, Ping DH, Yamabe-Mitarai Y, Wen C (2014) Impact of ruthenium on microstructure and corrosion behavior of β-type Ti–Nb–Ru alloys for biomedical applications. Mater Des 59:303–309. https://doi.org/10.1016/j.matdes.2014.02.058

    Article  CAS  Google Scholar 

  56. Gebert A, Oswald S, Helth A, Voss A, Gostin PF, Rohnke M, Janek J, Calin M, Eckert J (2015) Effect of indium (In) on corrosion and passivity of a beta-type Ti–Nb alloy in Ringer’s solution. Appl Surf Sci 335:213–222. https://doi.org/10.1016/j.apsusc.2015.02.058

    Article  CAS  Google Scholar 

  57. Dalmau A, Guiñón Pina V, Devesa F, Amigó V, Igual Muñoz A (2015) Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution. Mater Sci Eng C 48:56–62. https://doi.org/10.1016/j.msec.2014.11.036

    Article  CAS  Google Scholar 

  58. Çaha I, Alves AC, Kuroda PAB, Grandini CR, Pinto AMP, Rocha LA, Toptan F (2020) Degradation behavior of Ti–Nb alloys: corrosion behavior through 21 days of immersion and tribocorrosion behavior against alumina. Corros Sci 167:108488. https://doi.org/10.1016/j.corsci.2020.108488

    Article  CAS  Google Scholar 

  59. Moraes PEL, Contieri RJ, Lopes ESN, Robin A, Caram R (2014) Effects of Sn addition on the microstructure, mechanical properties and corrosion behavior of Ti–Nb–Sn alloys. Mater Charact 96:273–281. https://doi.org/10.1016/j.matchar.2014.08.014

    Article  CAS  Google Scholar 

  60. Atapour M, Pilchak AL, Frankel GS, Williams JC (2011) Corrosion behavior of β titanium alloys for biomedical applications. Mater Sci Eng C 31:885–891. https://doi.org/10.1016/j.msec.2011.02.005

    Article  CAS  Google Scholar 

  61. Guo WY, Sun J, Wu JS (2009) Electrochemical and XPS studies of corrosion behavior of Ti–23Nb–0.7Ta–2Zr–O alloy in Ringer’s solution. Mater Chem Phys 113:816–820. https://doi.org/10.1016/j.matchemphys.2008.08.043

    Article  CAS  Google Scholar 

  62. Robin A, Carvalho OAS, Schneider SG, Schneider S (2008) Corrosion behavior of Ti–xNb–13Zr alloys in Ringer’s solution. Mater Corros 59:929–933. https://doi.org/10.1002/maco.200805014

    Article  CAS  Google Scholar 

  63. Málek J, Hnilica F, Veselý J, Smola B, Kolařík K, Fojt J, Vlach M, Kodetová V (2016) The effect of Zr on the microstructure and properties of Ti–35Nb–XZr alloy. Mater Sci Eng A 675:1–10. https://doi.org/10.1016/j.msea.2016.07.069

    Article  CAS  Google Scholar 

  64. Ribeiro ALR, Hammer P, Vaz LG, Rocha LA (2013) Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study. Biomed Mater. https://doi.org/10.1088/1748-6041/8/6/065005

    Article  Google Scholar 

  65. Assis SL, Costa I (2007) Electrochemical evaluation of Ti–13Nb–13Zr, Ti–6Al–4V and Ti–6Al–7Nb alloys for biomedical application by long-term immersion tests. Mater Corros 58:329–333. https://doi.org/10.1002/maco.200604027

    Article  CAS  Google Scholar 

  66. Yang S, Zhang DC, Wei M, Su HX, Wu W, Lin JG (2013) Effects of the Zr and Mo contents on the electrochemical corrosion behavior of Ti–22Nb alloy. Mater Corros 64:402–407. https://doi.org/10.1002/maco.201106478

    Article  CAS  Google Scholar 

  67. Çaha I, Alves AC, Chirico C, Tsipas SA, Rodrigues IR, Pinto AMP, Grandini CR, Rocha LA, Gordo E, Toptan F (2020) Interactions between wear and corrosion on cast and sintered Ti–12Nb alloy in comparison with the commercial Ti–6Al–4V alloy. Corros Sci 176:108925. https://doi.org/10.1016/j.corsci.2020.108925

    Article  CAS  Google Scholar 

  68. Zhang LC, Chen LY (2019) A review on biomedical titanium alloys: recent progress and prospect. Adv Eng Mater 21:1–29. https://doi.org/10.1002/adem.201801215

    Article  CAS  Google Scholar 

  69. Liu X, Chen S, Tsoi JKH, Matinlinna JP (2017) Binary titanium alloys as dental implant materials—a review. Regen Biomater 4:315–323. https://doi.org/10.1093/rb/rbx027

    Article  CAS  Google Scholar 

  70. Zhou YL, Luo DM (2011) Corrosion behavior of Ti–Mo alloys cold rolled and heat treated. J Alloys Compd 509:6267–6272. https://doi.org/10.1016/j.jallcom.2011.03.045

    Article  CAS  Google Scholar 

  71. Oliveira NTC, Guastaldi AC (2008) Electrochemical behavior of Ti–Mo alloys applied as biomaterial. Corros Sci 50:938–945. https://doi.org/10.1016/j.corsci.2007.09.009

    Article  CAS  Google Scholar 

  72. Oliveira NTC, Guastaldi AC (2009) Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomater 5:399–405. https://doi.org/10.1016/j.actbio.2008.07.010

    Article  CAS  Google Scholar 

  73. Calderon Moreno JM, Vasilescu E, Drob P, Osiceanu P, Vasilescu C, Drob SI, Popa M (2013) Surface analysis and electrochemical behavior of Ti–20Zr alloy in simulated physiological fluids. Mater Sci Eng B 178:1195–1204. https://doi.org/10.1016/j.mseb.2013.07.006

    Article  CAS  Google Scholar 

  74. Michelle Grandin H, Berner S, Dard M (2012) A review of titanium zirconium (TiZr) alloys for use in endosseous dental implants. Mater (Basel) 5:1348–1360. https://doi.org/10.3390/ma5081348

    Article  CAS  Google Scholar 

  75. Akimoto T, Ueno T, Tsutsumi Y, Doi H, Hanawa T, Wakabayashi N (2018) Evaluation of corrosion resistance of implant-use Ti–Zr binary alloys with a range of compositions. J Biomed Mater Res B 106:73–79. https://doi.org/10.1002/jbm.b.33811

    Article  CAS  Google Scholar 

  76. Zhou YL, Niinomi M, Akahori T, Fukui H, Toda H (2005) Corrosion resistance and biocompatibility of Ti–Ta alloys for biomedical applications. Mater Sci Eng A 398:28–36. https://doi.org/10.1016/j.msea.2005.03.032

    Article  CAS  Google Scholar 

  77. Mareci D, Chelariu R, Gordin DM, Ungureanu G, Gloriant T (2009) Comparative corrosion study of Ti–Ta alloys for dental applications. Acta Biomater 5:3625–3639. https://doi.org/10.1016/j.actbio.2009.05.037

    Article  CAS  Google Scholar 

  78. Ou SF, Wang CY (2017) Effects of bioceramic particles in dielectric of powder-mixed electrical discharge machining on machining and surface characteristics of titanium alloys. J Mater Process Technol 245:70–79. https://doi.org/10.1016/j.jmatprotec.2017.02.018

    Article  CAS  Google Scholar 

  79. Manam NS, Harun WSW, Shri DNA, Ghani SAC, Kurniawan T, Ismail MH, Ibrahim MHI (2017) Study of corrosion in biocompatible metals for implants: a review. J Alloys Compd 701:698–715. https://doi.org/10.1016/j.jallcom.2017.01.196

    Article  CAS  Google Scholar 

  80. Xue P, Li Y, Li K, Zhang D, Zhou C (2015) Superelasticity, corrosion resistance and biocompatibility of the Ti–19Zr–10Nb–1Fe alloy. Mater Sci Eng C 50:179–186. https://doi.org/10.1016/j.msec.2015.02.004

    Article  CAS  Google Scholar 

  81. Nnamchi PS, Obayi CS, Todd I, Rainforth MW (2016) Mechanical and electrochemical characterisation of new Ti–Mo–Nb–Zr alloys for biomedical applications. J Mech Behav Biomed Mater 60:68–77. https://doi.org/10.1016/j.jmbbm.2015.12.023

    Article  CAS  Google Scholar 

  82. Cordeiro JM, Beline T, Ribeiro ALR, Rangel EC, da Cruz NC, Landers R, Faverani LP, Vaz LG, Fais LMG, Vicente FB, Grandini CR, Mathew MT, Sukotjo C, Barão VAR (2017) Development of binary and ternary titanium alloys for dental implants. Dent Mater 33:1244–1257. https://doi.org/10.1016/j.dental.2017.07.013

    Article  CAS  Google Scholar 

  83. Landolt D, Mischler S, Stemp M, Barril S (2004) Third body effects and material fluxes in tribocorrosion systems involving a sliding contact. Wear 256:517–524. https://doi.org/10.1016/S0043-1648(03)00561-1

    Article  CAS  Google Scholar 

  84. Tian YS, Chen CZ, Chen LX, Huo QH (2006) Microstructures and wear properties of composite coatings produced by laser alloying of Ti–6Al–4V with graphite and silicon mixed powders. Mater Lett 60:109–113. https://doi.org/10.1016/j.matlet.2005.07.082

    Article  CAS  Google Scholar 

  85. Fouvry S, Paulin C, Deyber S (2009) Impact of contact size and complex gross-partial slip conditions on Ti–6Al–4V/Ti–6Al–4V fretting wear. Tribol Int 42:461–474. https://doi.org/10.1016/j.triboint.2008.08.005

    Article  CAS  Google Scholar 

  86. Cvijović-Alagić I, Cvijović Z, Mitrović S, Panić V, Rakin M (2011) Wear and corrosion behaviour of Ti–13Nb–13Zr and Ti–6Al–4V alloys in simulated physiological solution. Corros Sci 53:796–808. https://doi.org/10.1016/j.corsci.2010.11.014

    Article  CAS  Google Scholar 

  87. Correa DRN, Kuroda PAB, Grandini CR, Rocha LA, Oliveira FGM, Alves AC, Toptan F (2016) Tribocorrosion behavior of β-type Ti–15Zr-based alloys. Mater Lett 179:118–121. https://doi.org/10.1016/j.matlet.2016.05.045

    Article  CAS  Google Scholar 

  88. More NS, Diomidis N, Paul SN, Roy M, Mischler S (2011) Tribocorrosion behavior of β titanium alloys in physiological solutions containing synovial components. Mater Sci Eng C 31:400–408. https://doi.org/10.1016/j.msec.2010.10.021

    Article  CAS  Google Scholar 

  89. Pina VG, Dalmau A, Devesa F, Amigó V, Muñoz AI (2015) Tribocorrosion behavior of beta titanium biomedical alloys in phosphate buffer saline solution. J Mech Behav Biomed Mater 46:59–68. https://doi.org/10.1016/j.jmbbm.2015.02.016

    Article  CAS  Google Scholar 

  90. Narayanan R, Seshadri SK (2007) Phosphoric acid anodization of Ti–6Al–4V—structural and corrosion aspects. Corros Sci 49:542–558. https://doi.org/10.1016/j.corsci.2006.06.021

    Article  CAS  Google Scholar 

  91. Deligianni DD, Katsala N, Ladas S, Sotiropoulou D, Amedee J, Missirlis YF (2001) Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials 22:1241–1251. https://doi.org/10.1016/S0142-9612(00)00274-X

    Article  CAS  Google Scholar 

  92. Gostin PF, Helth A, Voss A, Sueptitz R, Calin M, Eckert J, Gebert A (2013) Surface treatment, corrosion behavior, and apatite-forming ability of Ti–45Nb implant alloy. J Biomed Mater Res B 101(B):269–278. https://doi.org/10.1002/jbm.b.32836

    Article  CAS  Google Scholar 

  93. Zareidoost A, Yousefpour M, Ghaseme B, Amanzadeh A (2012) The relationship of surface roughness and cell response of chemical surface modification of titanium. J Mater Sci Mater Med 23:1479–1488. https://doi.org/10.1007/s10856-012-4611-9

    Article  CAS  Google Scholar 

  94. Lorenzetti M, Dogša I, Stošicki T, Stopar D, Kalin M, Kobe S, Novak S (2015) The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl Mater Interfaces 7:1644–1651. https://doi.org/10.1021/am507148n

    Article  CAS  Google Scholar 

  95. Sasikumar Y, Indira K, Rajendran N (2019) Surface modification methods for titanium and its alloys and their corrosion behavior in biological environment: a review. J Bio Tribo Corros. https://doi.org/10.1007/s40735-019-0229-5

    Article  Google Scholar 

  96. Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M, Martelet C (2003) Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng C 23:551–560. https://doi.org/10.1016/S0928-4931(03)00033-X

    Article  CAS  Google Scholar 

  97. Hoseini M, Jedenmalm A, Boldizar A (2008) Tribological investigation of coatings for artificial joints. Wear 264:958–966. https://doi.org/10.1016/j.wear.2007.07.003

    Article  CAS  Google Scholar 

  98. Jiang SW, Jiang B, Li Y, Li YR, Yin GF, Zheng CQ (2004) Friction and wear study of diamond-like carbon gradient coatings on Ti6Al4V substrate prepared by plasma source ion implant-ion beam enhanced deposition. Appl Surf Sci 236:285–291. https://doi.org/10.1016/j.apsusc.2004.04.032

    Article  CAS  Google Scholar 

  99. Manhabosco TM, Muller IL (2009) Electrodeposition of diamond-like carbon (DLC) films on Ti. Appl Surf Sci 255:4082–4086. https://doi.org/10.1016/j.apsusc.2008.10.087

    Article  CAS  Google Scholar 

  100. Ma T, Chen T, Li WY, Wang S, Yang S (2011) Formation mechanism of linear friction welded Ti–6Al–4V alloy joint based on microstructure observation. Mater Charact 62:130–135. https://doi.org/10.1016/j.matchar.2010.11.009

    Article  CAS  Google Scholar 

  101. Çaha I, Alves AC, Affonço LJ, Lisboa-Filho PN, da Silva JHD, Rocha LA, Pinto AMP, Toptan F (2019) Corrosion and tribocorrosion behaviour of titanium nitride thin films grown on titanium under different deposition times. Surf Coat Technol 374:878–888. https://doi.org/10.1016/j.surfcoat.2019.06.073

    Article  CAS  Google Scholar 

  102. Xu J, Hu W, Xie ZH, Munroe P (2016) Reactive-sputter-deposited β-Ta2O5 and TaON nanoceramic coatings on Ti–6Al–4V alloy against wear and corrosion damage. Surf Coat Technol 296:171–184. https://doi.org/10.1016/j.surfcoat.2016.04.004

    Article  CAS  Google Scholar 

  103. Ribeiro AM, Alves AC, Rocha LA, Silva FS, Toptan F (2014) Synergism between corrosion and wear on CoCrMo–Al2O3 biocomposites in a physiological solution. Tribol Int. https://doi.org/10.1016/j.triboint.2015.01.018

    Article  Google Scholar 

  104. Toptan F, Rego A, Alves AC, Guedes A (2016) Corrosion and tribocorrosion behavior of Ti-B4C composite intended for orthopaedic implants. J Mech Behav Biomed Mater 61:152–163. https://doi.org/10.1016/j.jmbbm.2016.01.024

    Article  CAS  Google Scholar 

  105. Silva JI, Alves AC, Pinto AM, Silva FS, Toptan F (2016) Dry sliding wear behaviour of Ti–TiB–TiNx in-situ composite synthesised by reactive hot pressing. Int J Surf Sci Eng 10:317–329. https://doi.org/10.1504/IJSURFSE.2016.077533

    Article  CAS  Google Scholar 

  106. Silva JI, Alves AC, Pinto AM, Toptan F (2017) Corrosion and tribocorrosion behavior of Ti−TiB−TiNx in-situ hybrid composite synthesized by reactive hot pressing. J Mech Behav Biomed Mater 74:195–203. https://doi.org/10.1016/j.jmbbm.2017.05.041

    Article  CAS  Google Scholar 

  107. Doni Z, Alves AC, Toptan F, Pinto AM, Rocha LA, Buciumeanu M, Palaghian L, Silva FS (2014) Tribocorrosion behaviour of hot pressed CoCrMo–Al2O3 composites for biomedical applications. Tribol Mater Surf Interfaces 8:201–208. https://doi.org/10.1179/1751584X14Y.0000000078

    Article  CAS  Google Scholar 

  108. Doni Z, Alves AC, Toptan F, Rocha LA, Buciumeanu M, Palaghian L, Silva FS (2014) Tribocorrosion behaviour of hot pressed CoCrMo-HAP biocomposites. Tribol Int 91:221–227. https://doi.org/10.1016/j.triboint.2015.04.009

    Article  CAS  Google Scholar 

  109. Gordo E, das Neves RG, Ferrari B, Jiménez-Morales A, Lima A, Alves AC, Pinto AM, Toptan F (2016) Corrosion and tribocorrosion behavior of Ti–alumina composites. Key Eng Mater 704:28–37. https://doi.org/10.4028/www.scientific.net/KEM.704.28

    Article  Google Scholar 

  110. Alves SA, Patel SB, Sukotjo C, Mathew MT, Filho PN, Celis JP, Rocha LA, Shokuhfar T (2017) Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: a promising strategy for an efficient biofunctional implant surface. Appl Surf Sci 399:682–701. https://doi.org/10.1016/j.apsusc.2016.12.105

    Article  CAS  Google Scholar 

  111. Rodrigues NR, Alves AC, Toptan F, Rocha LA (2018) Preliminary investigation on the tribocorrosion behaviour of nanotubular structured Ti6Al4V surfaces. Mater Lett 213:214–217. https://doi.org/10.1016/j.matlet.2017.11.067

    Article  CAS  Google Scholar 

  112. Sarraf M, Zalnezhad E, Bushroa AR, Hamouda AMS, Rafieerad AR, Nasiri-Tabrizi B (2015) Effect of microstructural evolution on wettability and tribological behavior of TiO2 nanotubular arrays coated on Ti–6Al–4V. Ceram Int 41:7952–7962. https://doi.org/10.1016/j.ceramint.2015.02.136

    Article  CAS  Google Scholar 

  113. Zalnezhad E, Baradaran S, Bushroa AR, Sarhan AAD (2014) Mechanical property enhancement of Ti–6Al–4V by multilayer thin solid film Ti/TiO2 nanotubular array coating for biomedical application. Metall Mater Trans A 45:785–797. https://doi.org/10.1007/s11661-013-2043-x

    Article  CAS  Google Scholar 

  114. Awad NK, Edwards SL, Morsi YS (2017) A review of TiO2 NTs on Ti metal: electrochemical synthesis, functionalization and potential use as bone implants. Mater Sci Eng C 76:1401–1412. https://doi.org/10.1016/j.msec.2017.02.150

    Article  CAS  Google Scholar 

  115. Mansoorianfar M, Tavoosi M, Mozafarinia R, Ghasemi A, Doostmohammadi A (2017) Preparation and characterization of TiO2 nanotube arrays on Ti6Al4V surface for enhancement of cell treatment. Surf Coat Technol 321:409–415. https://doi.org/10.1016/j.surfcoat.2017.05.016

    Article  CAS  Google Scholar 

  116. Taubert A, Mano JF, Rodríguez-Cabello JC (2013) Biomaterials surface science. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/9783527649600

    Book  Google Scholar 

  117. Su Y, Luo C, Zhang Z, Hermawan H, Zhu D, Huang J, Liang Y, Li G, Ren L (2018) Bioinspired surface functionalization of metallic biomaterials. J Mech Behav Biomed Mater 77:90–105. https://doi.org/10.1016/j.jmbbm.2017.08.035

    Article  CAS  Google Scholar 

  118. Prakash C, Kansal HK, Pabla BS, Puri S, Aggarwal A (2016) Electric discharge machining—a potential choice for surface modification of metallic implants for orthopedic applications: a review. Proc Inst Mech Eng B 230:331–353. https://doi.org/10.1177/0954405415579113

    Article  CAS  Google Scholar 

  119. Prakash C, Kansal HK, Pabla BS, Puri S (2015) Processing and characterization of novel biomimetic nanoporous bioceramic surface on β-Ti implant by powder mixed electric discharge machining. J Mater Eng Perform 24:3622–3633. https://doi.org/10.1007/s11665-015-1619-6

    Article  CAS  Google Scholar 

  120. Prakash C, Kansal HK, Pabla BS, Puri S (2016) Multi-objective optimization of powder mixed electric discharge machining parameters for fabrication of biocompatible layer on β-Ti alloy using NSGA-II coupled with Taguchi based response surface methodology. J Mech Sci Technol 30:4195–4204. https://doi.org/10.1007/s12206-016-0831-0

    Article  Google Scholar 

  121. Prakash C, Kansal HK, Pabla BS, Puri S (2017) Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy. Mater Manuf Process 32:274–285. https://doi.org/10.1080/10426914.2016.1198018

    Article  CAS  Google Scholar 

  122. Prakash C, Kansal HK, Pabla BS, Puri S (2017) On the influence of nanoporous layer fabricated by PMEDM on β-Ti implant: biological and computational evaluation of bone-implant interface. Mater Today Proc 4:2298–2307. https://doi.org/10.1016/j.matpr.2017.02.078

    Article  Google Scholar 

  123. Prakash C, Uddin MS (2017) Surface modification of β-phase Ti implant by hydroaxyapatite mixed electric discharge machining to enhance the corrosion resistance and in-vitro bioactivity. Surf Coat Technol 326:134–145. https://doi.org/10.1016/j.surfcoat.2017.07.040

    Article  CAS  Google Scholar 

  124. Azadmanjiri J, Berndt CC, Kapoor A, Wen C (2015) Development of surface nano-crystallization in alloys by surface mechanical attrition treatment (SMAT). Crit Rev Solid State Mater Sci 40:164–181. https://doi.org/10.1080/10408436.2014.978446

    Article  CAS  Google Scholar 

  125. Yang X, Pan H, Zhang J, Gao H, Shu B, Gong Y, Zhu X (2019) Progress in mechanical properties of gradient structured metallic materials induced by surface mechanical attrition treatment. Mater Trans 60:1543–1552. https://doi.org/10.2320/matertrans.MF201911

    Article  CAS  Google Scholar 

  126. Bahl S, Aleti BT, Suwas S, Chatterjee K (2018) Surface nanostructuring of titanium imparts multifunctional properties for orthopedic and cardiovascular applications. Mater Des 144:169–181. https://doi.org/10.1016/j.matdes.2018.02.022

    Article  CAS  Google Scholar 

  127. Jin L, Cui W, Song X, Zhou L (2015) The formation mechanisms of surface nanocrystallites in β-type biomedical TiNbZrFe alloy by surface mechanical attrition treatment. Appl Surf Sci 347:553–560. https://doi.org/10.1016/j.apsusc.2015.04.137

    Article  CAS  Google Scholar 

  128. Acharya S, Panicker AG, Gopal V, Dabas SS, Manivasagam G, Suwas S, Chatterjee K (2020) Surface mechanical attrition treatment of low modulus Ti–Nb–Ta–O alloy for orthopedic applications. Mater Sci Eng C 110:110729. https://doi.org/10.1016/j.msec.2020.110729

    Article  CAS  Google Scholar 

  129. Huang R, Han Y (2013) The effect of SMAT-induced grain refinement and dislocations on the corrosion behavior of Ti–25Nb–3Mo–3Zr–2Sn alloy. Mater Sci Eng C 33:2353–2359. https://doi.org/10.1016/j.msec.2013.01.068

    Article  CAS  Google Scholar 

  130. Wang M, Fan Y (2018) Electrochemical corrosion property of nanostructure layer of Ti–5Al–2Sn–2Zr–4Mo–4Cr titanium alloy. Int J Adv Manuf Technol 96:1601–1606. https://doi.org/10.1007/s00170-017-0660-z

    Article  Google Scholar 

  131. Huang R, Zhang L, Huang L, Zhu J (2019) Enhanced in-vitro osteoblastic functions on β-type titanium alloy using surface mechanical attrition treatment. Mater Sci Eng C 97:688–697. https://doi.org/10.1016/j.msec.2018.12.082

    Article  CAS  Google Scholar 

  132. Ma C, Andani MT, Qin H, Moghaddam NS, Ibrahim H, Jahadakbar A, Amerinatanzi A, Ren Z, Zhang H, Doll GL, Dong Y, Elahinia M, Ye C (2017) Improving surface finish and wear resistance of additive manufactured nickel–titanium by ultrasonic nano-crystal surface modification. J Mater Process Technol 249:433–440. https://doi.org/10.1016/j.jmatprotec.2017.06.038

    Article  CAS  Google Scholar 

  133. Kheradmandfard M, Kashani-Bozorg SF, Kim C-L, Hanzaki AZ, Pyoun Y-S, Kim J-H, Amanov A, Kim D-E (2017) Nanostructured β-type titanium alloy fabricated by ultrasonic nanocrystal surface modification. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2017.03.061

    Article  Google Scholar 

  134. Kheradmandfard M, Kashani-Bozorg SF, Lee JS, Kim CL, Hanzaki AZ, Pyun YS, Cho SW, Amanov A, Kim DE (2018) Significant improvement in cell adhesion and wear resistance of biomedical β-type titanium alloy through ultrasonic nanocrystal surface modification. J Alloys Compd 762:941–949. https://doi.org/10.1016/j.jallcom.2018.05.088

    Article  CAS  Google Scholar 

  135. Xu W, Wu X, Figueiredo RB, Stoica M, Calin M, Eckert J, Langdon TG, Xia K (2009) Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion. Int J Mater Res. https://doi.org/10.3139/146.110229

    Article  Google Scholar 

  136. Xu W, Edwards DP, Wu X, Stoica M, Calin M, Kühn U, Eckert J, Xia K (2013) Promoting nano/ultrafine-duplex structure via accelerated α precipitation in a β-type titanium alloy severely deformed by high-pressure torsion. Scr Mater 68:67–70. https://doi.org/10.1016/j.scriptamat.2012.09.023

    Article  CAS  Google Scholar 

  137. Yilmazer H, Niinomi M, Cho K, Nakai M, Hieda J, Sato S, Todaka Y (2014) Microstructural evolution of precipitation-hardened β-type titanium alloy through high-pressure torsion. Acta Mater 80:172–182. https://doi.org/10.1016/j.actamat.2014.07.041

    Article  CAS  Google Scholar 

  138. Gatina S, Semenova I, Leuthold J, Valiev R (2015) Nanostructuring and phase transformations in the β-alloy Ti–15Mo during high-pressure torsion. Adv Eng Mater 17:1742–1747. https://doi.org/10.1002/adem.201500104

    Article  CAS  Google Scholar 

  139. Delshadmanesh M, Khatibi G, Ghomsheh MZ, Lederer M, Zehetbauer M, Danninger H (2017) Influence of microstructure on fatigue of biocompatible β-phase Ti–45Nb. Mater Sci Eng A 706:83–94. https://doi.org/10.1016/j.msea.2017.08.098

    Article  CAS  Google Scholar 

  140. Yilmazer H, Şen M, Niinomi M, Nakai M, Huihong L, Cho K, Todaka Y, Shiku H, Matsue T (2016) Developing biomedical nano-grained β-type titanium alloys using high pressure torsion for improved cell adherence. RSC Adv 6:7426–7430. https://doi.org/10.1039/C5RA23454A

    Article  CAS  Google Scholar 

  141. Dimić I, Cvijović-Alagić I, Hohenwarter A, Pippan R, Kojić V, Bajat J, Rakin M (2018) Electrochemical and biocompatibility examinations of high-pressure torsion processed titanium and Ti–13Nb–13Zr alloy. J Biomed Mater Res B 106:1097–1107. https://doi.org/10.1002/jbm.b.33919

    Article  CAS  Google Scholar 

  142. Sharman K, Bazarnik P, Brynk T, Gunay Bulutsuz A, Lewandowska M, Huang Y, Langdon TG (2015) Enhancement in mechanical properties of a β-titanium alloy by high-pressure torsion. J Mater Res Technol 4:79–83. https://doi.org/10.1016/j.jmrt.2014.10.010

    Article  CAS  Google Scholar 

  143. Janeček M, Čížek J, Stráský J, Václavová K, Hruška P, Polyakova V, Gatina S, Semenova I (2014) Microstructure evolution in solution treated Ti15Mo alloy processed by high pressure torsion. Mater Charact 98:233–240. https://doi.org/10.1016/j.matchar.2014.10.024

    Article  CAS  Google Scholar 

  144. Pérez DAG, Jorge Junior AM, Roche V, Lepretre JC, Afonso CRM, Travessa DN, Asato GH, Bolfarini C, Botta WJ (2020) Severe plastic deformation and different surface treatments on the biocompatible Ti13Nb13Zr and Ti35Nb7Zr5Ta alloys: microstructural and phase evolutions, mechanical properties, and bioactivity analysis. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.152116

    Article  Google Scholar 

  145. Dimić I, Cvijović-Alagić I, Völker B, Hohenwarter A, Pippan R, Veljović D, Rakin M, Bugarski B (2016) Microstructure and metallic ion release of pure titanium and Ti–13Nb–13Zr alloy processed by high pressure torsion. Mater Des 91:340–347. https://doi.org/10.1016/j.matdes.2015.11.088

    Article  CAS  Google Scholar 

  146. Nocivin A, Raducanu D, Cinca I, Trisca-Rusu C, Butu M, Thibon I, Cojocaru VD (2015) X-ray diffraction study and texture evolution for a Ti–Nb–Ta biomedical alloy processed by accumulative roll bonding. J Mater Eng Perform 24:1587–1601. https://doi.org/10.1007/s11665-015-1414-4

    Article  CAS  Google Scholar 

  147. Cinca I, Raducanu D, Nocivin A, Gordin DM, Cojocaru VD (2013) Formation of nano-sized grains in Ti–10Zr–5Nb–5Ta biomedical alloy processed by accumulative roll bonding (ARB). Kov Mater 51:165–172. https://doi.org/10.4149/km.2013.3.165

    Article  CAS  Google Scholar 

  148. Raducanu D, Vasilescu E, Cojocaru VD, Cinca I, Drob P, Vasilescu C, Drob SI (2011) Mechanical and corrosion resistance of a new nanostructured Ti–Zr–Ta–Nb alloy. J Mech Behav Biomed Mater 4:1421–1430. https://doi.org/10.1016/j.jmbbm.2011.05.012

    Article  CAS  Google Scholar 

  149. Raducanu D, Vasilescu C, Nocivin A, Drob SI, Cinca I, Gordin D, Marcu M, Cojocaru VD (2014) Promoting structural and anticorrosive performances via accumulative roll bonding to a Ti–Ta–Nb alloy. Int J Electrochem Sci 10:4346–4358

    Google Scholar 

  150. Kent D, Wang G, Yu Z, Ma X, Dargusch M (2011) Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique. J Mech Behav Biomed Mater 4:405–416. https://doi.org/10.1016/j.jmbbm.2010.11.013

    Article  Google Scholar 

  151. Kent D, Xiao WL, Wang G, Yu Z, Dargusch MS (2012) Thermal stability of an ultrafine grain β-Ti alloy. Mater Sci Eng A 556:582–587. https://doi.org/10.1016/j.msea.2012.07.030

    Article  CAS  Google Scholar 

  152. Moore B, Asadi E, Lewis G (2017) Deposition methods for microstructured and nanostructured coatings on metallic bone implants: a review. Adv Mater Sci Eng. https://doi.org/10.1155/2017/5812907

    Article  Google Scholar 

  153. Zhao G, Xia L, Wen G, Song L, Wang X, Wu K (2012) Microstructure and properties of plasma-sprayed bio-coatings on a low-modulus titanium alloy from milled HA/Ti powders. Surf Coat Technol 206:4711–4719. https://doi.org/10.1016/j.surfcoat.2011.08.033

    Article  CAS  Google Scholar 

  154. Zhao GL, Wen G, Song Y, Wu K (2011) Near surface martensitic transformation and recrystallization in a Ti–24Nb–4Zr–7.9Sn alloy substrate after application of a HA coating by plasma spraying. Mater Sci Eng C 31:106–113. https://doi.org/10.1016/j.msec.2010.08.003

    Article  CAS  Google Scholar 

  155. He YH, Zhang YQ, Jiang YH, Zhou R (2016) Microstructure evolution and enhanced bioactivity of Ti–Nb–Zr alloy by bioactive hydroxyapatite fabricated via spark plasma sintering. RSC Adv 6:100939–100953. https://doi.org/10.1039/C6RA22986G

    Article  CAS  Google Scholar 

  156. Toptan F, Alves AC, Ferreira MA, da Silva Oliveira CI, Pinto AMP (2018) Effect of HAP decomposition on the corrosion behavior of Ti-HAP biocomposites. Mater Corros. https://doi.org/10.1002/maco.201810049

    Article  Google Scholar 

  157. Kim WG, Choe HC (2011) Surface characteristics of hydroxyapatite/titanium composite layer on the Ti–35Ta–xZr surface by RF and DC sputtering. Thin Solid Films 519:7045–7049. https://doi.org/10.1016/j.tsf.2011.04.090

    Article  CAS  Google Scholar 

  158. Sathish S, Geetha M, Aruna ST, Balaji N, Rajam KS, Asokamani R (2011) Studies on plasma sprayed bi-layered ceramic coating on bio-medical Ti–13Nb–13Zr alloy. Ceram Int 37:1333–1339. https://doi.org/10.1016/j.ceramint.2010.12.012

    Article  CAS  Google Scholar 

  159. Sathish S, Geetha M, Aruna ST, Balaji N, Rajam KS, Asokamani R (2011) Sliding wear behavior of plasma sprayed nanoceramic coatings for biomedical applications. Wear 271:934–941. https://doi.org/10.1016/j.wear.2011.03.023

    Article  CAS  Google Scholar 

  160. Bédouin Y, Gordin DM, Pellen-Mussi P, Pérez F, Tricot-Doleux S, Vasilescu C, Drob SI, Chauvel-Lebret D, Gloriant T (2019) Enhancement of the biocompatibility by surface nitriding of a low-modulus titanium alloy for dental implant applications. J Biomed Mater Res B 107:1483–1490. https://doi.org/10.1002/jbm.b.34240

    Article  CAS  Google Scholar 

  161. Akita M, Uematsu Y, Kakiuchi T, Nakajima M, Bai Y, Tamada K (2015) Fatigue behavior of bulk β-type titanium alloy Ti–15Mo–5Zr–3Al annealed in high temperature nitrogen gas. Mater Sci Eng A 627:351–359. https://doi.org/10.1016/j.msea.2015.01.022

    Article  CAS  Google Scholar 

  162. Mohan L, Raja MD, Uma TS, Rajendran N, Anandan C (2016) In-vitro biocompatibility studies of plasma-nitrided titanium alloy β-21S using fibroblast cells. J Mater Eng Perform 25:1508–1514. https://doi.org/10.1007/s11665-015-1860-z

    Article  CAS  Google Scholar 

  163. Cassar G, Matthews A, Leyland A (2012) Triode plasma diffusion treatment of titanium alloys. Surf Coat Technol 212:20–31. https://doi.org/10.1016/j.surfcoat.2012.09.006

    Article  CAS  Google Scholar 

  164. Tian W, Guo Y, Li X, Tang B, Fan A (2017) Friction and wear behavior of modified layer prepared on Ti–13Nb–13Zr alloy by magnetron sputtering and plasma nitriding. J Wuhan Univ Technol Mater Sci Ed 32:951–957. https://doi.org/10.1007/s11595-017-1695-6

    Article  CAS  Google Scholar 

  165. Çomakli O (2020) Influence of CrN, TiAlN monolayers and TiAlN/CrN multilayer ceramic films on structural, mechanical and tribological behavior of β-type Ti45Nb alloys. Ceram Int 46:8185–8191. https://doi.org/10.1016/j.ceramint.2019.12.046

    Article  CAS  Google Scholar 

  166. Krishnan V, Krishnan A, Remya R, Ravikumar KK, Nair SA, Shibli SMA, Varma HK, Sukumaran K, Kumar KJ (2011) Development and evaluation of two PVD-coated β-titanium orthodontic archwires for fluoride-induced corrosion protection. Acta Biomater 7:1913–1927. https://doi.org/10.1016/j.actbio.2010.11.026

    Article  CAS  Google Scholar 

  167. Ion R, Bédouin Y, Gloriant T, Andruseac G, Gordin DM, Cimpean A (2019) In vitro study of human endothelial progenitor cells behaviour on nitrided Ni-free Ti–27Nb alloy. Prog Nat Sci Mater Int 29:466–471. https://doi.org/10.1016/j.pnsc.2019.08.001

    Article  CAS  Google Scholar 

  168. Zhecheva A, Malinov S, Sha W (2006) Titanium alloys after surface gas nitriding. Surf Coat Technol 201:2467–2474. https://doi.org/10.1016/j.surfcoat.2006.04.019

    Article  CAS  Google Scholar 

  169. Yang C, Liu J (2019) Intermittent vacuum gas nitriding of TB8 titanium alloy. Vacuum 163:52–58. https://doi.org/10.1016/j.vacuum.2018.11.059

    Article  CAS  Google Scholar 

  170. Gordin DM, Thibon I, Guillou A, Cornen M, Gloriant T (2010) Microstructural characterization of nitrided beta Ti–Mo alloys at 1400 °C. Mater Charact 61:376–380. https://doi.org/10.1016/j.matchar.2009.12.010

    Article  CAS  Google Scholar 

  171. Vlcak P, Fojt J, Weiss Z, Kopeček J, Perina V (2019) The effect of nitrogen saturation on the corrosion behaviour of Ti–35Nb–7Zr–5Ta beta titanium alloy nitrided by ion implantation. Surf Coat Technol 358:144–152. https://doi.org/10.1016/j.surfcoat.2018.11.004

    Article  CAS  Google Scholar 

  172. Carquigny S, Takadoum J, Ivanescu S (2019) Comparative study of nitrogen implantation effect on mechanical and tribological properties of Ti–6Al–4V and Ti–10Zr–10Nb–5Ta alloys. EPJ Appl Phys 85:5–10. https://doi.org/10.1051/epjap/2019180149

    Article  CAS  Google Scholar 

  173. Gordin DM, Busardo D, Cimpean A, Vasilescu C, Höche D, Drob SI, Mitran V, Cornen M, Gloriant T (2013) Design of a nitrogen-implanted titanium-based superelastic alloy with optimized properties for biomedical applications. Mater Sci Eng C 33:4173–4182. https://doi.org/10.1016/j.msec.2013.06.008

    Article  CAS  Google Scholar 

  174. Mohan L, Anandan C (2013) Effect of gas composition on corrosion behavior and growth of apatite on plasma nitrided titanium alloy Beta-21S. Appl Surf Sci 268:288–296. https://doi.org/10.1016/j.apsusc.2012.12.080

    Article  CAS  Google Scholar 

  175. Mohan L, Anandan C (2013) Wear and corrosion behavior of oxygen implanted biomedical titanium alloy Ti–13Nb–13Zr. Appl Surf Sci 282:281–290. https://doi.org/10.1016/j.apsusc.2013.05.120

    Article  CAS  Google Scholar 

  176. Kokubo T, Yamaguchi S (2015) Bioactive titanate layers formed on titanium and its alloys by simple chemical and heat treatments. Open Biomed Eng J 9:29–41. https://doi.org/10.2174/1874120701509010029

    Article  CAS  Google Scholar 

  177. Helth A, Gostin PF, Oswald S, Wendrock H, Wolff U, Hempel U, Arnhold S, Calin M, Eckert J, Gebert A (2014) Chemical nanoroughening of Ti40Nb surfaces and its effect on human mesenchymal stromal cell response. J Biomed Mater Res B 102:31–41. https://doi.org/10.1002/jbm.b.32976

    Article  CAS  Google Scholar 

  178. Müller FA, Bottino MC, Müller L, Henriques VAR, Lohbauer U, Bressiani AHA, Bressiani JC (2008) In vitro apatite formation on chemically treated (P/M) Ti–13Nb–13Zr. Dent Mater 24:50–56. https://doi.org/10.1016/j.dental.2007.02.005

    Article  CAS  Google Scholar 

  179. Yamaguchi S, Hashimoto H, Nakai R, Takadama H (2017) Impact of surface potential on apatite formation in Ti alloys subjected to acid and heat treatments. Materials (Basel). https://doi.org/10.3390/ma10101127

    Article  Google Scholar 

  180. Schmidt R, Hoffmann V, Helth A, Gostin PF, Calin M, Eckert J, Gebert A (2016) Electrochemical deposition of hydroxyapatite on beta-Ti–40Nb. Surf Coat Technol 294:186–193. https://doi.org/10.1016/j.surfcoat.2016.03.063

    Article  CAS  Google Scholar 

  181. Lee BH, Do Kim Y, Shin JH, Lee KH (2002) Surface modification by alkali and heat treatments in titanium alloys. J Biomed Mater Res 61:466–473. https://doi.org/10.1002/jbm.10190

    Article  CAS  Google Scholar 

  182. Sasikumar Y, Karthega M, Rajendran N (2011) In vitro bioactivity of surface-modified β-Ti alloy for biomedical applications. J Mater Eng Perform 20:1271–1277. https://doi.org/10.1007/s11665-010-9772-4

    Article  CAS  Google Scholar 

  183. Ban S (2003) Effect of alkaline treatment of pure titanium and its alloys on the bonding strength of dental veneering resins. J Biomed Mater Res A 66:138–145. https://doi.org/10.1002/jbm.a.10566

    Article  CAS  Google Scholar 

  184. Takematsu E, Katsumata K, Okada K, Niinomi M, Matsushita N (2016) Bioactive surface modification of Ti–29Nb–13Ta–4.6Zr alloy through alkali solution treatments. Mater Sci Eng C 62:662–667. https://doi.org/10.1016/j.msec.2016.01.041

    Article  CAS  Google Scholar 

  185. Sasikumar Y, Rajendran N (2013) Influence of surface modification on the apatite formation and corrosion behavior of Ti and Ti–15Mo alloy for biomedical applications. Mater Chem Phys 138:114–123. https://doi.org/10.1016/j.matchemphys.2012.11.025

    Article  CAS  Google Scholar 

  186. Kumar AM, Sudhagar P, Ramakrishna S, Kang YS, Kim H, Gasem ZM, Rajendran N (2014) Evaluation of chemically modified Ti–5Mo–3Fe alloy surface: electrochemical aspects and in vitro bioactivity on MG63 cells. Appl Surf Sci 307:52–61. https://doi.org/10.1016/j.apsusc.2014.03.146

    Article  CAS  Google Scholar 

  187. Shukla AK, Balasubramaniam R (2006) Effect of surface treatment on electrochemical behavior of CP Ti, Ti–6Al–4V and Ti–13Nb–13Zr alloys in simulated human body fluid. Corros Sci 48:1696–1720. https://doi.org/10.1016/j.corsci.2005.06.003

    Article  CAS  Google Scholar 

  188. Li PF, Xu Y, Cheng XH (2013) Chemisorption of thermal reduced graphene oxide nano-layer film on TNTZ surface and its tribological behavior. Surf Coat Technol 232:331–339. https://doi.org/10.1016/j.surfcoat.2013.05.030

    Article  CAS  Google Scholar 

  189. Zheng CY, Li SJ, Tao XJ, Hao YL, Yang R, Zhang L (2007) Calcium phosphate coating of Ti–Nb–Zr–Sn titanium alloy. Mater Sci Eng C 27:824–831. https://doi.org/10.1016/j.msec.2006.09.021

    Article  CAS  Google Scholar 

  190. Takematsu E, Cho K, Hieda J, Nakai M, Katsumata K, Okada K, Niinomi M, Matsushita N (2016) Adhesive strength of bioactive oxide layers fabricated on TNTZ alloy by three different alkali-solution treatments. J Mech Behav Biomed Mater 61:174–181. https://doi.org/10.1016/j.jmbbm.2015.12.046

    Article  CAS  Google Scholar 

  191. Takematsu E, Noguchi K, Kuroda K, Ikoma T, Niinomi M, Matsushita N (2018) In vivo osteoconductivity of surface modified Ti–29Nb–13Ta–4.6Zr alloy with low dissolution of toxic trace elements. PLoS ONE 13:1–12. https://doi.org/10.1371/journal.pone.0189967

    Article  CAS  Google Scholar 

  192. Hieda J, Niinomi M, Nakai M, Cho K, Gozawa T, Katsui H, Tu R, Goto T (2013) Enhancement of adhesive strength of hydroxyapatite films on Ti–29Nb–13Ta–4.6Zr by surface morphology control. J Mech Behav Biomed Mater 18:232–239. https://doi.org/10.1016/j.jmbbm.2012.11.013

    Article  CAS  Google Scholar 

  193. Zuldesmi M, Waki A, Kuroda K, Okido M (2015) Hydrothermal treatment of titanium alloys for the enhancement of osteoconductivity. Mater Sci Eng C 49:430–435. https://doi.org/10.1016/j.msec.2015.01.031

    Article  CAS  Google Scholar 

  194. Liu XH, Wu L, Ai HJ, Han Y, Hu Y (2015) Cytocompatibility and early osseointegration of nanoTiO2-modified Ti–24Nb–4Zr–7.9Sn surfaces. Mater Sci Eng C 48:256–262. https://doi.org/10.1016/j.msec.2014.12.011

    Article  CAS  Google Scholar 

  195. Zheng CY, Li SJ, Tao XJ, Hao YL, Yang R (2009) Surface modification of Ti–Nb–Zr–Sn alloy by thermal and hydrothermal treatments. Mater Sci Eng C 29:1245–1251. https://doi.org/10.1016/j.msec.2008.10.008

    Article  CAS  Google Scholar 

  196. Tao F, Wei S (2014) Hydrothermal surface modification of a low modulus Ti–Nb based alloy. Rare Met Mater Eng 43:291–295. https://doi.org/10.1016/S1875-5372(14)60061-8

    Article  Google Scholar 

  197. Kazek-Kęsik A, Dercz G, Suchanek K, Kalemba-Rec I, Piotrowski J, Simka W (2015) Biofunctionalization of Ti–13Nb–13Zr alloy surface by plasma electrolytic oxidation. Part I. Surf Coat Technol 276:59–69. https://doi.org/10.1016/j.surfcoat.2015.06.034

    Article  CAS  Google Scholar 

  198. Minagar S, Berndt CC, Wang J, Ivanova E, Wen C (2012) A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater 8:2875–2888. https://doi.org/10.1016/j.actbio.2012.04.005

    Article  CAS  Google Scholar 

  199. Rafieerad AR, Ashra MR, Mahmoodian R, Bushroa AR (2015) Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: a review paper. Mater Sci Eng C 57:397–413. https://doi.org/10.1016/j.msec.2015.07.058

    Article  CAS  Google Scholar 

  200. Simka W, Krząkała A, Korotin DM, Zhidkov IS, Kurmaev EZ, Cholakh SO, Kuna K, Dercz G, Michalska J, Suchanek K, Gorewoda T (2013) Modification of a Ti–Mo alloy surface via plasma electrolytic oxidation in a solution containing calcium and phosphorus. Electrochim Acta 96:180–190. https://doi.org/10.1016/j.electacta.2013.02.102

    Article  CAS  Google Scholar 

  201. Kazek-Kȩsik A, Krok-Borkowicz M, Pamuła E, Simka W (2014) Electrochemical and biological characterization of coatings formed on Ti–15Mo alloy by plasma electrolytic oxidation. Mater Sci Eng C 43:172–181. https://doi.org/10.1016/j.msec.2014.07.021

    Article  CAS  Google Scholar 

  202. Kazek-Kȩsik A, Krok-Borkowicz M, Dercz G, Donesz-Sikorska A, Pamuła E, Simka W (2016) Multilayer coatings formed on titanium alloy surfaces by plasma electrolytic oxidation-electrophoretic deposition methods. Electrochim Acta 204:294–306. https://doi.org/10.1016/j.electacta.2016.02.193

    Article  CAS  Google Scholar 

  203. Kazek-Kęsik A, Jaworska J, Krok-Borkowicz M, Gołda-Cępa M, Pastusiak M, Brzychczy-Włoch M, Pamuła E, Kotarba A, Simka W (2016) Hybrid oxide-polymer layer formed on Ti–15Mo alloy surface enhancing antibacterial and osseointegration functions. Surf Coat Technol 302:158–165. https://doi.org/10.1016/j.surfcoat.2016.05.073

    Article  CAS  Google Scholar 

  204. Kazek-Kęsik A, Kuna K, Dec W, Widziołek M, Tylko G, Osyczka AM, Simka W (2016) In vitro bioactivity investigations of Ti–15Mo alloy after electrochemical surface modification. J Biomed Mater Res B 104:903–913. https://doi.org/10.1002/jbm.b.33442

    Article  CAS  Google Scholar 

  205. Kazek-Kȩsik A, Dercz G, Kalemba I, Suchanek K, Kukharenko AI, Korotin DM, Michalska J, Krza̧kała A, Piotrowski J, Kurmaev EZ, Cholakh SO, Simka W (2014) Surface characterisation of Ti–15Mo alloy modified by a PEO process in various suspensions. Mater Sci Eng C 39:259–272. https://doi.org/10.1016/j.msec.2014.03.008

    Article  CAS  Google Scholar 

  206. Sowa M, Piotrowska M, Widziołek M, Dercz G, Tylko G, Gorewoda T, Osyczka AM, Simka W (2015) Bioactivity of coatings formed on Ti–13Nb–13Zr alloy using plasma electrolytic oxidation. Mater Sci Eng C 49:159–173. https://doi.org/10.1016/j.msec.2014.12.073

    Article  CAS  Google Scholar 

  207. Sharkeev Y, Komarova E, Sedelnikova M, Sun ZM, Zhu QF, Zhang J, Tolkacheva T, Uvarkin P (2017) Structure and properties of micro-arc calcium phosphate coatings on pure titanium and Ti–40Nb alloy. Trans Nonferrous Met Soc China 27:125–133. https://doi.org/10.1016/S1003-6326(17)60014-1

    Article  CAS  Google Scholar 

  208. Kazek-Kęsik A, Krok-Borkowicz M, Jakóbik-Kolon A, Pamuła E, Simka W (2015) Biofunctionalization of Ti–13Nb–13Zr alloy surface by plasma electrolytic oxidation. Part II. Surf Coat Technol 276:23–30. https://doi.org/10.1016/j.surfcoat.2015.06.035

    Article  CAS  Google Scholar 

  209. Tao XJ, Li SJ, Zheng CY, Fu J, Guo Z, Hao YL, Yang R, Guo ZX (2009) Synthesis of a porous oxide layer on a multifunctional biomedical titanium by micro-arc oxidation. Mater Sci Eng C 29:1923–1934. https://doi.org/10.1016/j.msec.2009.03.004

    Article  CAS  Google Scholar 

  210. Ou SF, Lin CS, Pan YN (2011) Microstructure and surface characteristics of hydroxyapatite coating on titanium and Ti–30Nb–1Fe–1Hf alloy by anodic oxidation and hydrothermal treatment. Surf Coat Technol 205:2899–2906. https://doi.org/10.1016/j.surfcoat.2010.10.063

    Article  CAS  Google Scholar 

  211. Zhao L, Wei Y, Li J, Han Y, Ye R, Zhang Y (2010) Initial osteoblast functions on Ti–5Zr–3Sn–5Mo–15Nb titanium alloy surfaces modified by microarc oxidation. J Biomed Mater Res A 92:432–440. https://doi.org/10.1002/jbm.a.32348

    Article  CAS  Google Scholar 

  212. Yu S, Yu ZT, Wang G, Han JY, Ma XQ, Dargusch MS (2011) Preparation and osteoinduction of active micro-arc oxidation films on Ti–3Zr–2Sn–3Mo–25Nb alloy. Trans Nonferrous Met Soc China 21:573–580. https://doi.org/10.1016/S1003-6326(11)60753-X

    Article  CAS  Google Scholar 

  213. Gao Y, Gao B, Wang R, Wu J, Zhang LJ, Hao YL, Tao XJ (2009) Improved biological performance of low modulus Ti–24Nb–4Zr–7.9Sn implants due to surface modification by anodic oxidation. Appl Surf Sci 255:5009–5015. https://doi.org/10.1016/j.apsusc.2008.12.054

    Article  CAS  Google Scholar 

  214. Pan YN, Lin CS, Wang KK, Ou SF (2014) Effect of Nb addition on anodic behavior of Ti alloy in electrolyte containing calcium and phosphorus. Surf Coat Technol 258:1016–1024. https://doi.org/10.1016/j.surfcoat.2014.07.037

    Article  CAS  Google Scholar 

  215. Ou SF, Chou HH, Lin CS, Shih CJ, Wang KK, Pan YN (2012) Effects of anodic oxidation and hydrothermal treatment on surface characteristics and biocompatibility of Ti–30Nb–1Fe–1Hf alloy. Appl Surf Sci 258:6190–6198. https://doi.org/10.1016/j.apsusc.2012.02.109

    Article  CAS  Google Scholar 

  216. Correa DRN, Rocha LA, Ribeiro AR, Gemini-Piperni S, Archanjo BS, Achete CA, Werckmann J, Afonso CRM, Shimabukuro M, Doi H, Tsutsumi Y, Hanawa T (2018) Growth mechanisms of Ca- and P-rich MAO films in Ti–15Zr–xMo alloys for osseointegrative implants. Surf Coat Technol 344:373–382. https://doi.org/10.1016/j.surfcoat.2018.02.099

    Article  CAS  Google Scholar 

  217. Chen H-T, Chung C-J, Yang T-C, Chiang I-P, Tang C-H, Chen K-C, He J-L (2010) Osteoblast growth behavior on micro-arc oxidized β-titanium alloy. Surf Coat Technol 205:1624–1629. https://doi.org/10.1016/j.surfcoat.2010.07.027

    Article  CAS  Google Scholar 

  218. He X, Zhang X, Wang X, Qin L (2017) Review of antibacterial activity of titanium-based implants’ surfaces fabricated by micro-arc oxidation. Coatings 7:45. https://doi.org/10.3390/coatings7030045

    Article  CAS  Google Scholar 

  219. Kazek-Kesik A, Krok-Borkowicz M, Jakóbik-Kolon A, Pamuła E, Simka W (2015) Biofunctionalization of Ti–13Nb–13Zr alloy surface by plasma electrolytic oxidation. Part II. Surf Coat Technol 276:23–30. https://doi.org/10.1016/j.surfcoat.2015.06.035

    Article  CAS  Google Scholar 

  220. Gebert A, Eigel D, Gostin PF, Hoffmann V, Uhlemann M, Helth A, Pilz S, Schmidt R, Calin M, Göttlicher M, Rohnke M, Janek J (2016) Oxidation treatments of beta-type Ti–40Nb for biomedical use. Surf Coat Technol 302:88–99. https://doi.org/10.1016/j.surfcoat.2016.05.036

    Article  CAS  Google Scholar 

  221. Sedelnikova MB, Komarova EG, Sharkeev YP, Ugodchikova AV, Mushtovatova LS, Karpova MR, Sheikin VV, Litvinova LS, Khlusov IA (2019) Zn-, Cu- or Ag-incorporated micro-arc coatings on titanium alloys: properties and behavior in synthetic biological media. Surf Coat Technol 369:52–68. https://doi.org/10.1016/j.surfcoat.2019.04.021

    Article  CAS  Google Scholar 

  222. Michalska J, Sowa M, Piotrowska M, Widziołek M, Tylko G, Dercz G, Socha RP, Osyczka AM, Simka W (2019) Incorporation of Ca ions into anodic oxide coatings on the Ti–13Nb–13Zr alloy by plasma electrolytic oxidation. Mater Sci Eng C 104:109957. https://doi.org/10.1016/j.msec.2019.109957

    Article  CAS  Google Scholar 

  223. Tanase CE, Golozar M, Best SM, Brooks RA (2019) Cell response to plasma electrolytic oxidation surface-modified low-modulus β-type titanium alloys. Colloids Surf B 176:176–184. https://doi.org/10.1016/j.colsurfb.2018.12.064

    Article  CAS  Google Scholar 

  224. Jang SH, Choe HC, Ko YM, Brantley WA (2009) Electrochemical characteristics of nanotubes formed on Ti–Nb alloys. Thin Solid Films 517:5038–5043. https://doi.org/10.1016/j.tsf.2009.03.166

    Article  CAS  Google Scholar 

  225. Ossowska A, Sobieszczyk S, Supernak M, Zielinski A (2014) Morphology and properties of nanotubular oxide layer on the “Ti–13Zr–13Nb” alloy. Surf Coat Technol 258:1239–1248. https://doi.org/10.1016/j.surfcoat.2014.06.054

    Article  CAS  Google Scholar 

  226. Hernández-López JM, Conde A, de Damborenea J, Arenas MA (2015) Correlation of the nanostructure of the anodic layers fabricated on Ti13Nb13Zr with the electrochemical impedance response. Corros Sci 94:61–69. https://doi.org/10.1016/j.corsci.2015.01.041

    Article  CAS  Google Scholar 

  227. Kim HJ, Jeong YH, Choe HC, Brantley WA (2013) Surface morphology of TiN-coated nanotubular Ti–25Ta–xZr alloys for dental implants prepared by RF sputtering. Thin Solid Films 549:131–134. https://doi.org/10.1016/j.tsf.2013.09.045

    Article  CAS  Google Scholar 

  228. Jeong YH, Choe HC, Brantley WA, Sohn IB (2013) Hydroxyapatite thin film coatings on nanotube-formed Ti–35Nb–10Zr alloys after femtosecond laser texturing. Surf Coat Technol 217:13–22. https://doi.org/10.1016/j.surfcoat.2012.11.066

    Article  CAS  Google Scholar 

  229. Jeong YH, Choe HC, Brantley WA (2011) Nanostructured thin film formation on femtosecond laser-textured Ti–35Nb–xZr alloy for biomedical applications. Thin Solid Films 519:4668–4675. https://doi.org/10.1016/j.tsf.2011.01.014

    Article  CAS  Google Scholar 

  230. Hieda J, Niinomi M, Nakai M, Cho K, Mohri T, Hanawa T (2014) Adhesive strength of medical polymer on anodic oxide nanostructures fabricated on biomedical β-type titanium alloy. Mater Sci Eng C 36:244–251. https://doi.org/10.1016/j.msec.2013.12.012

    Article  CAS  Google Scholar 

  231. Li X, Chen T, Hu J, Li S, Zou Q, Li Y, Jiang N, Li H, Li J (2016) Modified surface morphology of a novel Ti–24Nb–4Zr–7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration. Colloids Surf B 144:265–275. https://doi.org/10.1016/j.colsurfb.2016.04.020

    Article  CAS  Google Scholar 

  232. Hao YQ, Li SJ, Hao YL, Zhao YK, Ai HJ (2013) Effect of nanotube diameters on bioactivity of a multifunctional titanium alloy. Appl Surf Sci 268:44–51. https://doi.org/10.1016/j.apsusc.2012.11.142

    Article  CAS  Google Scholar 

  233. Verissimo NC, Geilich BM, Oliveira HG, Caram R, Webster TJ (2015) Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn. J Biomed Mater Res A 103:3757–3763. https://doi.org/10.1002/jbm.a.35517

    Article  CAS  Google Scholar 

  234. Kim HJ, Jeong YH, Choe HC, Brantley WA (2014) Surface characteristics of hydroxyapatite coatings on nanotubular Ti–25Ta–xZr alloys prepared by electrochemical deposition. Surf Coat Technol 259:274–280. https://doi.org/10.1016/j.surfcoat.2014.03.013

    Article  CAS  Google Scholar 

  235. Kim SH, Jeong YH, Choe HC, Brantley WA (2014) Morphology change of HA films on highly ordered nanotubular Ti–Nb–Hf alloys as a function of electrochemical deposition cycle. Surf Coat Technol 259:281–289. https://doi.org/10.1016/j.surfcoat.2014.03.006

    Article  CAS  Google Scholar 

  236. Jeong YH, Kim EJ, Brantley WA, Choe HC (2014) Morphology of hydroxyapatite nanoparticles in coatings on nanotube-formed Ti–Nb–Zr alloys for dental implants. Vacuum 107:297–303. https://doi.org/10.1016/j.vacuum.2014.03.004

    Article  CAS  Google Scholar 

  237. Byeon IS, Lee K, Choe HC, Brantley WA (2015) Surface morphology of Zn-containing hydroxyapatite (Zn–HA) deposited electrochemically on Ti–xNb alloys. Thin Solid Films 587:163–168. https://doi.org/10.1016/j.tsf.2015.01.028

    Article  CAS  Google Scholar 

  238. Hussein MA, Kumar AM, Yilbas BS, Al-Aqeeli N (2017) Laser nitriding of the newly developed Ti–20Nb–13Zr at.% biomaterial alloy to enhance its mechanical and corrosion properties in simulated body fluid. J Mater Eng Perform 26:5553–5562. https://doi.org/10.1007/s11665-017-2955-5

    Article  CAS  Google Scholar 

  239. Hussein MA, Yilbas B, Kumar AM, Drew R, Al-Aqeeli N (2018) Influence of laser nitriding on the surface and corrosion properties of Ti–20Nb–13Zr alloy in artificial saliva for dental applications. J Mater Eng Perform 27:4655–4664. https://doi.org/10.1007/s11665-018-3569-2

    Article  CAS  Google Scholar 

  240. Zhao X, Zhang P, Wang X, Chen Y, Liu H, Chen L, Sheng Y, Li W (2018) In-situ formation of textured TiN coatings on biomedical titanium alloy by laser irradiation. J Mech Behav Biomed Mater 78:143–153. https://doi.org/10.1016/j.jmbbm.2017.11.019

    Article  CAS  Google Scholar 

  241. Chan CW, Chang X, Bozorgzadeh MA, Smith GC, Lee S (2020) A single parameter approach to enhance the microstructural and mechanical properties of beta Ti–Nb alloy via open-air fiber laser nitriding. Surf Coat Technol 383:125269. https://doi.org/10.1016/j.surfcoat.2019.125269

    Article  CAS  Google Scholar 

  242. Geetha M, Mudali UK, Pandey ND, Asokamani R, Raj B (2004) Microstructural and corrosion evaluation of laser surface nitrided Ti–13Nb–13Zr alloy. Surf Eng 20:68–74. https://doi.org/10.1179/026708404225010595

    Article  CAS  Google Scholar 

  243. Zhang T, Fan Q, Ma X, Wang W, Wang K, Shen P, Yang J (2019) Microstructure and mechanical properties of Ti–35Nb–2Ta–3Zr alloy by laser quenching. Front Mater 6:1–9. https://doi.org/10.3389/fmats.2019.00318

    Article  Google Scholar 

  244. Mohseni H, Nandwana P, Tsoi A, Banerjee R, Scharf TW (2015) In situ nitrided titanium alloys: microstructural evolution during solidification and wear. Acta Mater 83:61–74. https://doi.org/10.1016/j.actamat.2014.09.026

    Article  CAS  Google Scholar 

  245. Chan CW, Lee S, Smith G, Sarri G, Ng CH, Sharba A, Man HC (2016) Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen. Appl Surf Sci 367:80–90. https://doi.org/10.1016/j.apsusc.2016.01.091

    Article  CAS  Google Scholar 

  246. Saud SN, Raheleh Hosseinian S, Bakhsheshi-Rad HR, Yaghoubidoust F, Iqbal N, Hamzah E, Ooi CHR (2016) Corrosion and bioactivity performance of graphene oxide coating on Ti–Nb shape memory alloys in simulated body fluid. Mater Sci Eng C 68:687–694. https://doi.org/10.1016/j.msec.2016.06.048

    Article  CAS  Google Scholar 

  247. Lubov Donaghy C, McFadden R, Kelaini S, Carson L, Margariti A, Chan CW (2020) Creating an antibacterial surface on beta TNZT alloys for hip implant applications by laser nitriding. Opt Laser Technol 121:105793. https://doi.org/10.1016/j.optlastec.2019.105793

    Article  CAS  Google Scholar 

  248. Donaghy CL, McFadden R, Smith GC, Kelaini S, Carson L, Malinov S, Margariti A, Chan CW (2019) Fibre laser treatment of beta TNZT titanium alloys for load-bearing implant applications: effects of surface physical and chemical features on mesenchymal stem cell response and Staphylococcus aureus bacterial attachment. Coatings. https://doi.org/10.3390/COATINGS9030186

    Article  Google Scholar 

  249. González M, Salvagni E, Rodríguez-Cabello JC, Rupérez E, Gil FJ, Peña J, Manero JM (2013) A low elastic modulus Ti–Nb–Hf alloy bioactivated with an elastin-like protein-based polymer enhances osteoblast cell adhesion and spreading. J Biomed Mater Res A 101(A):819–826. https://doi.org/10.1002/jbm.a.34388

    Article  CAS  Google Scholar 

  250. Hsu S-K, Ho W-F, Wu S-C, Chen Y-S, Hsu H-C (2016) In vitro study of Ti–Nb–Sn alloy surface modified with RGD peptide. Thin Solid Films 620:139–144. https://doi.org/10.1016/j.tsf.2016.09.063

    Article  CAS  Google Scholar 

  251. Hieda J, Niinomi M, Nakai M, Kamura H, Tsutsumi H, Hanawa T (2012) Effect of terminal functional groups of silane layers on adhesive strength between biomedical Ti–29Nb–13Ta–4.6Zr alloy and segment polyurethanes. Surf Coat Technol 206:3137–3141. https://doi.org/10.1016/j.surfcoat.2011.12.044

    Article  CAS  Google Scholar 

  252. Sun YS, Huang CY, Chen CS, Chang JH, Hou WT, Li SJ, Hao YL, Pan H, Huang HH (2018) Bone cell responses to a low elastic modulus titanium alloy surface immobilized with the natural cross-linker genipin. Surf Coat Technol 350:918–924. https://doi.org/10.1016/j.surfcoat.2018.03.069

    Article  CAS  Google Scholar 

  253. Liu CF, Li SJ, Hou WT, Hao YL, Huang HH (2019) Enhancing corrosion resistance and biocompatibility of interconnected porous β-type Ti–24Nb–4Zr–8Sn alloy scaffold through alkaline treatment and type I collagen immobilization. Appl Surf Sci 476:325–334. https://doi.org/10.1016/j.apsusc.2019.01.084

    Article  CAS  Google Scholar 

  254. Choe HC (2013) Photofunctionalization of EB-PVD HA-coated nano-pore surface of Ti–30Nb–xZr alloy for dental implants. Surf Coat Technol 228:S470–S476. https://doi.org/10.1016/j.surfcoat.2012.05.018

    Article  CAS  Google Scholar 

  255. Nguyen PMH, Won DH, Kim BS, Jang YS, Nguyen TDT, Lee MH, Bae TS (2018) The effect of two-step surface modification for Ti–Ta–Mo–Zr alloys on bone regeneration: an evaluation using calvarial defect on rat model. Appl Surf Sci 442:630–639. https://doi.org/10.1016/j.apsusc.2018.02.211

    Article  CAS  Google Scholar 

  256. Fojt J, Joska L, Hybasek V, Pruchova E, Malek J (2018) Impedance technique for monitoring of apatite precipitation from simulated body fluid. Electrochim Acta 271:158–164. https://doi.org/10.1016/j.electacta.2018.03.120

    Article  CAS  Google Scholar 

  257. Rangel ALR, Falentin-Daudré C, da Silva Pimentel BNA, Vergani CE, Migonney V, Alves Claro APR (2020) Nanostructured titanium alloy surfaces for enhanced osteoblast response: a combination of morphology and chemistry. Surf Coat Technol 383:125226. https://doi.org/10.1016/j.surfcoat.2019.125226

    Article  CAS  Google Scholar 

  258. Park SY, Jo CI, Choe HC, Brantley WA (2016) Hydroxyapatite deposition on micropore-formed Ti–Ta–Nb alloys by plasma electrolytic oxidation for dental applications. Surf Coat Technol 294:15–20. https://doi.org/10.1016/j.surfcoat.2016.03.056

    Article  CAS  Google Scholar 

  259. Kazek-Kęsik A, Leśniak K, Orzechowska BU, Drab M, Wiśniewska A, Simka W (2018) Alkali treatment of anodized titanium alloys affects cytocompatibility. Metals (Basel). https://doi.org/10.3390/met8010029

    Article  Google Scholar 

  260. Kazek-Kęsik A, Leśniak K, Zhidkov IS, Korotin DM, Kukharenko AI, Cholakh SO, Kalemba-Rec I, Suchanek K, Kurmaev EZ, Simka W (2017) Influence of alkali treatment on anodized titanium alloys in wollastonite suspension. Metals (Basel). https://doi.org/10.3390/met7090322

    Article  Google Scholar 

  261. Kazek-Kęsik A, Nosol A, Płonka J, Śmiga-Matuszowicz M, Gołda-Cępa M, Krok-Borkowicz M, Brzychczy-Włoch M, Pamuła E, Simka W (2019) PLGA-amoxicillin-loaded layer formed on anodized Ti alloy as a hybrid material for dental implant applications. Mater Sci Eng C 94:998–1008. https://doi.org/10.1016/j.msec.2018.10.049

    Article  CAS  Google Scholar 

  262. Wang X, Chen Y, Xu LJ, Xiao S, Kong F, Do Woo K (2011) Ti–Nb–Sn-hydroxyapatite composites synthesized by mechanical alloying and high frequency induction heated sintering. J Mech Behav Biomed Mater 4:2074–2080. https://doi.org/10.1016/j.jmbbm.2011.07.006

    Article  CAS  Google Scholar 

  263. Majumdar P, Singh SB, Dhara S, Chakraborty M (2012) Influence of in situ TiB reinforcements and role of heat treatment on mechanical properties and biocompatibility of β Ti-alloys. J Mech Behav Biomed Mater 10:1–12. https://doi.org/10.1016/j.jmbbm.2012.02.014

    Article  CAS  Google Scholar 

  264. Majumdar P, Singh SB, Dhara S, Chakraborty M (2015) Influence of boron addition to Ti–13Zr–13Nb alloy on MG63 osteoblast cell viability and protein adsorption. Mater Sci Eng C 46:62–68. https://doi.org/10.1016/j.msec.2014.10.012

    Article  CAS  Google Scholar 

  265. Málek J, Hnilica F, Veselý J, Smola B, Březina V, Kolařík K (2014) The effect of boron addition on microstructure and mechanical properties of biomedical Ti35Nb6Ta alloy. Mater Charact 96:166–176. https://doi.org/10.1016/j.matchar.2014.07.015

    Article  CAS  Google Scholar 

  266. Ou KL, Weng CC, Lin YH, Huang MS (2017) A promising of alloying modified beta-type titanium–niobium implant for biomedical applications: microstructural characteristics, in vitro biocompatibility and antibacterial performance. J Alloys Compd 697:231–238. https://doi.org/10.1016/j.jallcom.2016.12.120

    Article  CAS  Google Scholar 

  267. Li YH, Shang XY (2020) Recent progress in porous TiNb-based alloys for biomedical implant applications. Mater Sci Technol (United Kingdom) 36:385–392. https://doi.org/10.1080/02670836.2020.1724415

    Article  CAS  Google Scholar 

  268. Manoj A, Kasar AK, Menezes PL (2019) Tribocorrosion of porous titanium used in biomedical applications. J Bio Tribo Corros. https://doi.org/10.1007/s40735-018-0194-4

    Article  Google Scholar 

  269. Li Y, Ding Y, Munir K, Lin J, Brandt M, Atrens A, Xiao Y, Kanwar JR, Wen C (2019) Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications. Acta Biomater 87:273–284. https://doi.org/10.1016/j.actbio.2019.01.051

    Article  CAS  Google Scholar 

  270. Zhuravleva K, Chivu A, Teresiak A, Scudino S, Calin M, Schultz L, Eckert J, Gebert A (2013) Porous low modulus Ti40Nb compacts with electrodeposited hydroxyapatite coating for biomedical applications. Mater Sci Eng C 33:2280–2287. https://doi.org/10.1016/j.msec.2013.01.049

    Article  CAS  Google Scholar 

  271. Mutlu I, Yeniyol S, Oktay E (2016) Production and precipitation hardening of beta-type Ti–35Nb–10Cu alloy foam for implant applications. J Mater Eng Perform 25:1586–1593. https://doi.org/10.1007/s11665-016-1982-y

    Article  CAS  Google Scholar 

  272. Soran MR, Mutlu I (2019) Production and anodising of highly porous Ti–Ta–Zr–Co alloy for biomedical implant applications. Corros Eng Sci Technol 54:54–61. https://doi.org/10.1080/1478422X.2018.1527820

    Article  CAS  Google Scholar 

  273. Xu J, Zhang J, Bao L, Lai T, Luo J, Zheng Y (2018) Preparation and bioactive surface modification of the microwave sintered porous Ti–15Mo alloys for biomedical application. Sci China Mater 61:545–556. https://doi.org/10.1007/s40843-017-9098-2

    Article  CAS  Google Scholar 

  274. Guo S, Meng Q, Zhao X, Wei Q, Xu H (2015) Design and fabrication of a metastable β-type titanium alloy with ultralow elastic modulus and high strength. Sci Rep 5:14688. https://doi.org/10.1038/srep14688

    Article  CAS  Google Scholar 

  275. Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB (2011) Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scr Mater 65:21–24. https://doi.org/10.1016/j.scriptamat.2011.03.024

    Article  CAS  Google Scholar 

  276. Li YH, Yang C, Wang F, Zhao HD, Qu SG, Li XQ, Zhang WW, Li YY (2015) Biomedical TiNbZrTaSi alloys designed by d-electron alloy design theory. Mater Des 85:7–13. https://doi.org/10.1016/j.matdes.2015.06.176

    Article  CAS  Google Scholar 

  277. Liang SX, Feng XJ, Yin LX, Liu XY, Ma MZ, Liu RP (2016) Development of a new β-Ti alloy with low modulus and favorable plasticity for implant material. Mater Sci Eng C 61:338–343. https://doi.org/10.1016/j.msec.2015.12.076

    Article  CAS  Google Scholar 

  278. Yang X, Hutchinson CR (2016) Corrosion-wear of β-Ti alloy alloy TMZF (Ti–12Mo–6Zr–2Fe) in simulated body fluid. Acta Biomater 42:429–439. https://doi.org/10.1016/j.actbio.2016.07.008

    Article  CAS  Google Scholar 

  279. Lee YS, Niinomi M, Nakai M, Narita K, Cho K (2015) Predominant factor determining wear properties of β-type and (α+β)-type titanium alloys in metal-to-metal contact for biomedical applications. J Mech Behav Biomed Mater 41:208–220. https://doi.org/10.1016/j.jmbbm.2014.10.005

    Article  CAS  Google Scholar 

  280. Lee Y, Niinomi M, Nakai M, Narita K, Cho K (2015) Differences in wear behaviors at sliding contacts for β-type and (α + β)-type titanium alloys in Ringer’s solution and air. Mater Trans 56:317–326

    CAS  Google Scholar 

  281. Gongadze E, Kabaso D, Bauer S, Slivnik T, Schmuki P, van Rienen U, Iglič A (2011) Adhesion of osteoblasts to a nanorough titanium implant surface. Int J Nanomed. https://doi.org/10.2147/IJN.S21755

    Article  Google Scholar 

  282. Xiong J, Wang X, Li Y, Hodgson PD (2011) Interfacial chemistry and adhesion between titanium dioxide nanotube layers and titanium substrates. J Phys Chem C 115:4768–4772. https://doi.org/10.1021/jp111651d

    Article  CAS  Google Scholar 

  283. Yu D, Zhu X, Xu Z, Zhong X, Gui Q, Song Y, Zhang S, Chen X, Li D (2014) Facile method to enhance the adhesion of TiO2 nanotube arrays to Ti substrate. ACS Appl Mater Interfaces 6:8001–8005. https://doi.org/10.1021/am5015716

    Article  CAS  Google Scholar 

  284. Cao S, Huang W, Wu L, Tian M, Song Y (2018) On the interfacial adhesion between TiO2 nanotube array layer and Ti substrate. Langmuir 34:13888–13896. https://doi.org/10.1021/acs.langmuir.8b03408

    Article  CAS  Google Scholar 

  285. Li T, Gulati K, Wang N, Zhang Z, Ivanovski S (2018) Understanding and augmenting the stability of therapeutic nanotubes on anodized titanium implants. Mater Sci Eng C 88:182–195. https://doi.org/10.1016/j.msec.2018.03.007

    Article  CAS  Google Scholar 

  286. Zhang Y, Han Y, Zhang L (2015) Interfacial structure of the firmly adhered TiO2 nanotube films to titanium fabricated by a modified anodization. Thin Solid Films 583:151–157. https://doi.org/10.1016/j.tsf.2015.03.060

    Article  CAS  Google Scholar 

  287. Fontes ACCA, Sopchenski L, Laurindo CAH, Torres RD, Popat KC, Soares P (2020) Annealing a effect on tribocorrosion and biocompatibility properties of TiO2 nanotubes. J Bio Tribo Corros 6:1–12. https://doi.org/10.1007/s40735-020-00363-w

    Article  Google Scholar 

  288. Alves SA, Rossi AL, Ribeiro AR, Toptan F, Pinto AM, Celis JP, Shokuhfar T, Rocha LA (2017) Tribo-electrochemical behavior of bio-functionalized TiO2 nanotubes in artificial saliva: understanding of degradation mechanisms. Wear 384–385:28–42. https://doi.org/10.1016/j.wear.2017.05.005

    Article  CAS  Google Scholar 

  289. Alves SA, Rossi AL, Ribeiro AR, Toptan F, Pinto AM, Shokuhfar T, Celis JP, Rocha LA (2018) Improved tribocorrosion performance of bio-functionalized TiO2 nanotubes under two-cycle sliding actions in artificial saliva. J Mech Behav Biomed Mater 80:143–154. https://doi.org/10.1016/j.jmbbm.2018.01.038

    Article  CAS  Google Scholar 

  290. Sun M, Yu D, Lu L, Ma W, Song Y, Zhu X (2015) Effective approach to strengthening TiO2 nanotube arrays by using double or triple reinforcements. Appl Surf Sci 346:172–176. https://doi.org/10.1016/j.apsusc.2015.04.004

    Article  CAS  Google Scholar 

  291. Ouyang HM, Fei GT, Zhang Y, Su H, Jin Z, Xu SH, De Zhang L (2013) Large scale free-standing open-ended TiO2 nanotube arrays: stress-induced self-detachment and in situ pore opening. J Mater Chem C 1:7498–7506. https://doi.org/10.1039/c3tc31642d

    Article  CAS  Google Scholar 

  292. Luz AR, De Souza GB, Lepienski CM, Kuromoto NK, Siqueira CJM (2018) Tribological properties of nanotubes grown on Ti–35Nb alloy by anodization. Thin Solid Films 660:529–537. https://doi.org/10.1016/j.tsf.2018.06.050

    Article  CAS  Google Scholar 

  293. Mukherjee S, Dhara S, Saha P (2018) Laser surface remelting of Ti and its alloys for improving surface biocompatibility of orthopaedic implants. Mater Technol 33:106–118. https://doi.org/10.1080/10667857.2017.1390931

    Article  CAS  Google Scholar 

  294. Shah A, Izman S, Ismail SNF, Mas Ayu H, Che Kob CG, Daud R, Abdul Kadir MR (2018) The influence of ultrasonic vibration frequency on the properties of TiN coated biomedical Ti–13Zr–13Nb. Metals (Basel) 8:1–10. https://doi.org/10.3390/met8050317

    Article  CAS  Google Scholar 

  295. Wang P, Li H, Zhang Y, Liu H, Guo Y, Liu Z, Zhao S, Yin J, Guo Y (2014) Morphology of nanotube arrays grown on Ti–35Nb–2Ta–3Zr alloys with different deformations. Appl Surf Sci 290:308–312. https://doi.org/10.1016/j.apsusc.2013.11.073

    Article  CAS  Google Scholar 

  296. Bahl S, Meka SRK, Suwas S, Chatterjee K (2018) Surface severe plastic deformation of an orthopedic Ti–Nb–Sn alloy induces unusual precipitate remodeling and supports stem cell osteogenesis through Akt signaling. ACS Biomater Sci Eng 4:3132–3142. https://doi.org/10.1021/acsbiomaterials.8b00406

    Article  CAS  Google Scholar 

  297. Kheradmandfard M, Kashani-Bozorg SF, Kang KH, Penkov OV, Zarei Hanzaki A, Pyoun YS, Amanov A, Kim DE (2018) Simultaneous grain refinement and nanoscale spinodal decomposition of β phase in Ti–Nb–Ta–Zr alloy induced by ultrasonic mechanical impacts. J Alloys Compd 738:540–549. https://doi.org/10.1016/j.jallcom.2017.12.049

    Article  CAS  Google Scholar 

  298. Zhang ZB, Hao YL, Li SJ, Yang R (2013) Fatigue behavior of ultrafine-grained Ti–24Nb–4Zr–8Sn multifunctional biomedical titanium alloy. Mater Sci Eng A 577:225–233. https://doi.org/10.1016/j.msea.2013.04.051

    Article  CAS  Google Scholar 

  299. Gatina SA, Semenova IP, Ubyyvovk EV, Valiev RZ (2018) Phase transformations, strength, and modulus of elasticity of Ti–15Mo alloy obtained by high-pressure torsion. Inorg Mater Appl Res 9:14–20. https://doi.org/10.1134/S2075113318010136

    Article  Google Scholar 

  300. Kolobov YR, Golosova OA, Manokhin SS (2018) Regularities of formation and degradation of the microstructure and properties of new ultrafine-grained low-modulus Ti–Nb–Mo–Zr alloys. Russ J Non-Ferrous Met 59:393–402. https://doi.org/10.3103/S1067821218040090

    Article  Google Scholar 

  301. Hee AC, Martin PJ, Bendavid A, Jamali SS, Zhao Y (2018) Tribo-corrosion performance of filtered-arc-deposited tantalum coatings on Ti–13Nb–13Zr alloy for bio-implants applications. Wear 400–401:31–42. https://doi.org/10.1016/j.wear.2017.12.017

    Article  CAS  Google Scholar 

  302. Gnanavel S, Ponnusamy S, Mohan L (2018) Biocompatible response of hydroxyapatite coated on near-β titanium alloys by E-beam evaporation method. Biocatal Agric Biotechnol 15:364–369. https://doi.org/10.1016/j.bcab.2018.07.014

    Article  Google Scholar 

  303. Anandan C, Mohan L (2013) In vitro corrosion behavior and apatite growth of oxygen plasma ion implanted titanium alloy β-21S. J Mater Eng Perform 22:3507–3516. https://doi.org/10.1007/s11665-013-0628-6

    Article  CAS  Google Scholar 

  304. Guo L, Qin L, Kong F, Yi H, Tang B (2016) Improving tribological properties of Ti–5Zr–3Sn–5Mo–15Nb alloy by double glow plasma surface alloying. Appl Surf Sci 388:203–211. https://doi.org/10.1016/j.apsusc.2016.01.201

    Article  CAS  Google Scholar 

  305. Yılmaz E, Gökçe A, Findik F, Gulsoy HO (2018) Metallurgical properties and biomimetic HA deposition performance of Ti–Nb PIM alloys. J Alloys Compd 746:301–313. https://doi.org/10.1016/j.jallcom.2018.02.274

    Article  CAS  Google Scholar 

  306. Lauria I, Kutz TN, Böke F, Rütten S, Zander D, Fischer H (2019) Influence of nanoporous titanium niobium alloy surfaces produced via hydrogen peroxide oxidative etching on the osteogenic differentiation of human mesenchymal stromal cells. Mater Sci Eng C 98:635–648. https://doi.org/10.1016/j.msec.2019.01.023

    Article  CAS  Google Scholar 

  307. Lario J, Amigó A, Segovia F, Amigó V (2018) Surface modification of Ti–35Nb–10Ta–15Fe by the double acid-etching process. Materials (Basel) 11:1–11. https://doi.org/10.3390/ma11040494

    Article  CAS  Google Scholar 

  308. Mendes MWD, Ágreda CG, Bressiani AHA, Bressiani JC (2016) A new titanium based alloy Ti–27Nb–13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial. Mater Sci Eng C 63:671–677. https://doi.org/10.1016/j.msec.2016.03.052

    Article  CAS  Google Scholar 

  309. Fajri H, Ariani W, Gunawarman, Tjong DH, Manjas M (2019) Corrosion behaviour of collagen coated and uncoated biomedical titanium alloy (TNTZ) within human synovial fluid. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/547/1/012007

    Article  Google Scholar 

  310. Arumugam MK, Hussein MA, Adesina AY, Al-Aqeeli N (2019) In vitro corrosion and bioactivity performance of surface-treated Ti–20Nb–13Zr alloys for orthopedic applications. Coatings 9:1–13. https://doi.org/10.3390/COATINGS9050344

    Article  Google Scholar 

  311. Kasuga T, Mizuno T, Watanabe M, Nogami M, Niinomi M (2001) Calcium phosphate invert glass-ceramic coatings joined by self-development of compositionally gradient layers on a titanium alloy. Biomaterials 22:577–582. https://doi.org/10.1016/S0142-9612(00)00216-7

    Article  CAS  Google Scholar 

  312. Dikici B, Niinomi M, Topuz M, Say Y, Aksakal B, Yilmazer H, Nakai M (2018) Synthesis and characterization of hydroxyapatite/TiO2 coatings on the β-type titanium alloys with different sintering parameters using sol–gel method. Prot Met Phys Chem Surf 54:457–462. https://doi.org/10.1134/S2070205118030255

    Article  CAS  Google Scholar 

  313. Dikici B, Niinomi M, Topuz M, Koc SG, Nakai M (2018) Synthesis of biphasic calcium phosphate (BCP) coatings on β-type titanium alloys reinforced with rutile-TiO2 compounds: adhesion resistance and in-vitro corrosion. J Sol–Gel Sci Technol 87:713–724. https://doi.org/10.1007/s10971-018-4755-2

    Article  CAS  Google Scholar 

  314. Kasuga T, Nogami M, Niinomi M, Hattori T (2003) Bioactive calcium phosphate invert glass-ceramic coating on β-type Ti–29Nb–13Ta–4.6Zr alloy. Biomaterials 24:283–290. https://doi.org/10.1016/S0142-9612(02)00316-2

    Article  CAS  Google Scholar 

  315. dos Santos ML, dos Santos Riccardi C, de Almeida Filho E, Guastaldi AC (2018) Sol–gel based calcium phosphates coatings deposited on binary Ti–Mo alloys modified by laser beam irradiation for biomaterial/clinical applications. J Mater Sci Mater Med. https://doi.org/10.1007/s10856-018-6091-z

    Article  Google Scholar 

  316. Gnanavel S, Ponnusamy S, Mohan L, Radhika R, Muthamizhchelvan C, Ramasubramanian K (2018) Electrochemical behavior of biomedical titanium alloys coated with diamond carbon in Hanks’ solution. J Mater Eng Perform 27:1635–1641. https://doi.org/10.1007/s11665-018-3250-9

    Article  CAS  Google Scholar 

  317. Gopal V, Chandran M, Rao MSR, Mischler S, Cao S, Manivasagam G (2017) Tribocorrosion and electrochemical behaviour of nanocrystalline diamond coated Ti based alloys for orthopaedic application. Tribol Int 106:88–100. https://doi.org/10.1016/j.triboint.2016.10.040

    Article  CAS  Google Scholar 

  318. Travessa DN, da Silva Sobrinho AS, Júnior AMJ, Roche V (2019) Surface plasma nitriding of beta-titanium alloy bio-material. Key Eng Mater. https://doi.org/10.4028/www.scientific.net/KEM.813.328

    Article  Google Scholar 

  319. Li H, Fu T, Li W, Alajmi Z, Sun J (2016) Hydrothermal growth of TiO2-CaP nano-films on a Ti–Nb-based alloy in concentrated calcium phosphate solutions. J Nanopart Res 18:1–7. https://doi.org/10.1007/s11051-015-3315-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by FCT national funds, under the national support to R&D units grant, through the reference project UIDB/04436/2020 and UIDP/04436/2020, together with M-ERA-NET/0001/2015 project. I. Çaha is grateful for financial support through PhD grant under the NORTE-08-5369-FSE-000012 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Çaha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çaha, I., Alves, A.C., Rocha, L.A. et al. A Review on Bio-functionalization of β-Ti Alloys. J Bio Tribo Corros 6, 135 (2020). https://doi.org/10.1007/s40735-020-00432-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-020-00432-0

Keywords