Skip to main content
Log in

Conditions for pathogen elimination by immune systems

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Summary

A continuous harvest effort can lead a population to extinction. How an “unconscious” immune system would perpetrate such an effort in order to eliminate a self-replicating antigen (a pathogen) becomes an intriguing problem if the system responses are functions of the pathogen population: the responses cannot be a continuous effort as the pathogen vanishes. On theoretical grounds, we show some qualities an immune response must have to support pathogen elimination. Then, three specific mechanisms are addressed: a pathogen-independent positive feedback loop among the responding cells of the system (e.g., B-lymphocyte and T-helper); the persistence of antigen bound to presenting cells; and the programmed expansion/contraction of a pool of responding cells. The maintenance of responding cells due to these mechanisms is the essential feature to the effective clearance of self-replicating agents. Thus, evolutionarily, the primary function of a helper lymphocyte would be to amplify a response and the primary function of memory would be the very elimination of pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antia, R., Koella, J., 1994. A model of non-specific immunity. J. Theor. Biol. 168, 141–150.

    Article  PubMed  CAS  Google Scholar 

  • Bachmann, M.F., Kundig, T.M., Hengartner, H., Zinkernagel, R.M., 1997. Protection against immunopathological consequences of a viral infection by activated but not resting cytotoxic T cells: T cell memory without “memory T cells”? Proc. Natl. Acad. Sci. USA 94, 640–645.

    Article  PubMed  CAS  Google Scholar 

  • Badovinac, V.P., Tvinnereim, A., Harty, J.T., 2000. Regulation of antigen-specific CD8+T cell homeostasis by perforin and interferon-γ. Science 290, 1354–1357.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, M.J., Goldrath, A.W., 2000. T-cell memory: you must remember this. Curr. Biol. 10, R338-R340.

    Article  PubMed  CAS  Google Scholar 

  • Bocharov, G., Romanyukha, A., 1994. Mathematical model of antiviral immune response III. Influenza A virus infection. J. Theor. Biol. 167, 323–360.

    Article  PubMed  CAS  Google Scholar 

  • Boman, H.G., 2000. Innate immunity and the normal microflora. Immunol. Rev. 173, 5–16.

    Article  PubMed  CAS  Google Scholar 

  • Bunce, C., Bell, E.B., 1997. CD45RC isoforms define two types of CD4 memory T cells, one of which depends on persisting antigen. J. Exp. Med. 185, 767–776.

    Article  PubMed  CAS  Google Scholar 

  • Busch, D.H., Pilip, I.M., Vijh, S., Pamer, E.G., 1998. Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 8, 353–362.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury, D., 1993. A unified model of immune response II: continuum approach. J. Theor. Biol. 165, 135–159.

    Article  PubMed  CAS  Google Scholar 

  • Ciurea, A., Hunziker, L., Klenerman, P., Hengartner, H., Zinkernagel, R.M., 2001. Impairment of CD4+T cell responses during chronic virus infection prevents neutralizing antibody responses against virus escape mutants. J. Exp. Med. 193, 297–305.

    Article  PubMed  CAS  Google Scholar 

  • De Boer, R., Perelson, A., 1995. Towards a general function describing T cell proliferation. J. Theor. Biol. 175, 567–576.

    Article  PubMed  Google Scholar 

  • Dibrov, B.F., Livshits, M., Volkenstein, M.V., 1977. Mathematical model of immune processes. J. Theor. Biol. 65, 609–631.

    Article  PubMed  CAS  Google Scholar 

  • Facciotti, M.C., Schmideil, W., 1995. The new concept of minimum cell viability and its consequences on bioprocess design and operation. Braz. J. Chem. Eng. 12, 22–31.

    CAS  Google Scholar 

  • Ferenci, T., 1999. Growth of bacterial cultures 50 years on: towards an uncertainty principle instead of contants in bacterial growth kinetics. Res. Microbiol. 150, 431–438.

    Article  PubMed  CAS  Google Scholar 

  • Fishman, M., Perelson, A., 1994. Th1/Th2 cross regulation. J. Theor. Biol. 170, 25–56.

    Article  PubMed  CAS  Google Scholar 

  • Fishman, M., Perelson, A., 1999. Th1/Th2 differentiation and cross-regulation. Bull. Mater. Biol. 61, 403–436.

    Article  CAS  Google Scholar 

  • Hogan, R.J., Usherwood, E.J., Zhong, W., Roberts, A., Dutton, R.W., Harmsen, A.G., Woodland, D.L. 2001a. Activated antigen-specific CD8+T cells persist in the lungs following recovery from respiratory virus infections. J. Immunol. 166, 1813–1822.

    PubMed  CAS  Google Scholar 

  • Hogan, R.J., Zhong, W., Usherwood, E.J., Cookenham, T., Roberts, A., Woodland D.L., 2001b. Protection from respiratory virus infections can be mediated by antigen-specific CD4(+) T cells that persist in the lungs. J. Exp. Med. 193, 981–986.

    Article  PubMed  CAS  Google Scholar 

  • Hou, S., Hyland, L., Ryan, K.W., Portner, A., Doherty, P.C., 1994. Virus-specific CD8+T-cell memory determined by clonal burst size. Nature 369, 652–654.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, E., 1998. Mutation, selection and memory in B lymphocytes of exothermic vertebrates. Immunol. Res. 162, 25–36.

    Article  CAS  Google Scholar 

  • Kaufman, M., Thomas, R., 1987. Model analysis of the bases of multistationarity in the humoral immune response. J. Theor. Biol. 129, 141–162.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, M., Urbain, J., Thomas, R., 1985. Towards a logical analysis of the immune-response. J. Theor. Biol. 114, 527–561.

    Article  PubMed  CAS  Google Scholar 

  • Koverova-Kovar, K., Egli, T., 1998. Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol. Mol. Biol. Rev. 62, 646–666.

    Google Scholar 

  • Langman, R.E., 1989. The Immune System: Evolutionary Principles Guide our Understanding of this Complex Biological Defense System. Academic Press, San Diego.

    Google Scholar 

  • Le Morvan, C., Troutaud, D., Deschaux, P., 1998. Differential effects of temperature on specific and nonspecific immune defenses in fish. J. Exp. Biol. 201, 165–168.

    PubMed  Google Scholar 

  • Marshall, D., Turner, S., Belz, G., Wingo, S., Andreansky, S., Sangster, M., Riberdy, J., Liu, T., Tan, M., Doherty, P., 2001. Measuring the diaspora for virus-specific CD8+T cells. Proc. Natl. Acad. Sci. USA 98, 6313–6318.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama, M., Lam, K.P., Rajewsky, K., 2000. Memory B-cell persistence is independent of persisting immunizing antigen. Nature 407, 636–642.

    Article  PubMed  CAS  Google Scholar 

  • McLean, A., 1994. Modelling T cell memory. J. Theor. Biol. 170, 63–74.

    Article  PubMed  CAS  Google Scholar 

  • Mercado, R., Vijh, S., Allen, S.E., Kerksiek, K., Pilip, I.M., Pamer, E.G., 2000. Early programming of T cell populations responding to bacterial infection. J. Immunol. 165, 6833–6839.

    PubMed  CAS  Google Scholar 

  • Monteiro, L.H.A., 2002. Sistemas Dinâmicos. Editora-Livraria da Física, São Paulo.

    Google Scholar 

  • Murray, J.D., 1993. Mathematical Biology, 2nd Ed., Springer, Berlin.

    Google Scholar 

  • Strogatz, S. H., 1994. Nonlinear Dynamics and Chaos. Addison-Wesley, Reading.

    Google Scholar 

  • Thomsen, A.R., Nansen, A., Andreasen, S.Ø., Wodraz, D., Christensen, J.P., 2000. Host factors influencing viral persistence. Phil. Trans. R. Soc. London series B 355, 1031–1041.

    Article  CAS  Google Scholar 

  • Wodarz, D., 2001. Cytotoxic T-lymphocyte memory, virus clearance and antigenic heterogeneity. Proc. R. Soc. London series B 268, 429–436.

    Article  CAS  Google Scholar 

  • Wodarz, D., May, R.M., Nowak, M.A., 2000. The role of antigen-independent persistence of memory cytotoxic T lymphocytes. Int. Immunol. 12, 467–477.

    Article  PubMed  CAS  Google Scholar 

  • Wodarz, D., Jansen, V.A.A., 2001. The role of T cell help for anti-viral CTL responses. J. Theor. Biol. 211, 419–432.

    Article  PubMed  CAS  Google Scholar 

  • Zinkernagel, R.M., Hengartner, H., 2001 Regulation of the immune response by antigen. Science 293, 251–253.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Guilherme Chaui-Berlinck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaui-Berlinck, J.G., Barbuto, J.A.M. & Monteiro, L.H.A. Conditions for pathogen elimination by immune systems. Theory Biosci. 123, 195–208 (2004). https://doi.org/10.1016/j.thbio.2004.01.001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.thbio.2004.01.001

Keywords

Navigation