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Abstract

Workplace stress has a signicant impact on productivity, since keeping workers’ stress on
an adequate level results a key factor for companies to increase their performance. While a
high stress level may conduct to anxiety or absenteeism, a low level may also have undesir-
able consequences, such as lack of motivation. To identify and understand all the elements
which interfere on workers’ stress results a key factor in order to improve workers’ perfor-
mance. However, the complexity of human behavior increases the diculty of recognizing
the inuence of these stressors and nding a way to regulate workers’ stress. This paper
proposes the use of agent-based simulation techniques for addressing the challenge of ana-
lyzing workers’ behavior and stress regulation policies. The main contributions of the paper
are: (i) the denition of a stress model that takes into account work and ambient condi-
tions to calculate the stress and the productivity of workers; (ii) the implementation of this
model in an agent-based simulation system, enabling the analysis of workplace stress and
productivity for dierent stress regulation policies; (iii) the analysis of four dierent stress
regulation policies; and (iv) the validation of the model with a sensitivity analysis and with
its application to a living lab.

Keywords: stress, agent-based simulation, productivity, stress modeling, workplace stress

1. Introduction

Recent changes in working life have led to new challenges for organizations and employees,
which may result in increasingly stressful working environments [1]. The economic and
health costs of stressful work environments may be much greater than expected. The Fourth
European Working Conditions Survey [2] stated that 22% of Europeans were suering from
stress and fatigue; and in a recent opinion poll, 51% of European workers considered that
stress is common in their workplaces [3]. Also, it is estimated that work-related stress is
the cause of about the 50% of all lost working days in European enterprises [4]. Similar
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results can be found for United States, where 40% of workers reported their job was very or
extremely stressful and 29% of workers felt quite a bit or extremely stressed at work [5].

The huge impact of workplace stress on business has enhanced the interest and research
on stress prevention. Work related stress can be prevented if the main provoking factors
(or stressors) are identied. This could enable the design and implementation of regulation
policies that decrease their adverse eects.

However, evaluating the eectiveness of these policies in a real scenario is challenging,
mainly due to two reasons: the complexity of human behavior, and the costs that entails the
implementation of stress detection and regulation techniques in a real scenario. These chal-
lenges could be addressed with the use of agent-based simulation. Agent-based simulation
techniques have an established place in the analysis of human behavior [6], as they provide
an approach to evaluate a large number of behavioural dimensions or variables without the
need of implementing expensive systems. The use of agent-based simulation is particularly
useful when there are complex interactions between agents, heterogeneous populations, and
complexes behaviors [7]. One of the open challenges in agent-based systems is the diculty
of designing reliable agent behavior models, due to the high number of variables involved in
human behavior [8], which are often hard to quantify, calibrate, and even justify. Focusing
on the modelling of workplace stress, there are some approaches [9, 10] in the literature
which propose a model based on the working conditions (workload or available time).

This paper aims to advance the state of the art in human stress models, proposing a
model that integrates not only working conditions, but also ambient. The model has been
implemented in an agent-based simulation system, and evaluated by mean of a sensitivity
analysis. In addition, a real experiment in a living lab has been carried out in order to
validate the simulation results. The article also provides an open source tool for studying
and analyzing dierent stress regulation policies, measuring their eectiveness for regulating
stress and improving workers’ productivity. This tool has been used for carrying out an
analysis of four dierent stress regulation policies, whose results are also presented.

The remainder of the article is structured as follows: Section 2 gives an overview of
stress theories and current work on stress simulation models. Once existing models have
been reviewed, the proposed scenario taken into account for the simulations is presented in
Section 3. The denition and implementation of the proposed model model is described in
Section 4, while the results obtained for the proposed scenario are described in Section 5.
Finally, a evaluation by mean of a sensitivity analysis and an experiment in a living lab is
presented in Section 6, and Section 7 describes the conclusions drawn from this paper, as
well as possible lines of future work.

2. Background

In this section, an overview of the leading theories about stress modeling is given. Then,
current research on agent-based stress simulation is reviewed.

2.1. Stress theories
Stress is one of the most important emotions to analyze in the workplace context, as

its adverse eects on an employee have a substantial impact on productivity loss [11]. Fur-
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thermore, the signicant correlation between mental fatigue and impairment of physical
performance in humans has been proved [12].

There is not a universally recognized denition for stress, since this notion is used in
dierent contexts. According to the work of Cox and Griths [1, 13, 14], there are three
dierent approaches to the denition of work-related stress: engineering, physiological and
psychological. In the engineering approach, the stress is seen as a stimulus of the environment
in the form of level of demand. Regarding the physiological, stress can be dened according
to the changes that occur in a human under a stress state. Finally, from a psychological
point of view, stress is dened as the dynamic process that occurs as an individual interacts
with the environment.

In the same way that there are numerous denitions of stress, there are also numerous
stress theories [15]. The Person-Environment (P-E) t theory [16], based on the works by
Lewin [17] and Murray [18], has been the source of other approaches to stress and well-
being. This theory argues that stress arises not from the person or environment separately,
but rather by the t or congruence between them. It denes stress as a lack of match
between their abilities (knowledge and skills) and the demands placed on them.

In 1982, Lazarus & Holroyd proposed the Transactional Model of Stress [19], that con-
siders stress as a relationship between the person and the environment. This environment
is appraised by the person as taxing, thus threatening well-being [20]. Lazarus & Holroyd
distinguish two types of appraisal: primary and secondary. At the primary, a person ac-
knowledges that there is something at stake; while at the secondary, individuals search for
the benet in a demanding encounter [21].

A dierent approach is the Job Demands-Control-Support model, proposed by Karasek
and Theorell [22]. This model proposes an interaction where high demands and low control
would predict high strain, but that high control would buer the negative eect of demands
on outcomes. The model has good predictive validity at the macro level, but it does not
take into account individual dierences in susceptibility to stressors. Consequently, it cannot
explain the dierent behavioural or health outcomes under the same levels of demand and
control in two individuals [23].

Another popular view of stress at work is the Eort-Reward Imbalance (ERI) model,
proposed by Siegrist [24]. This model introduces some key features, as it emphasizes subjec-
tive perceptions of the environment. The central concept of the ERI model is that eort at
work should be compensated by suitable rewards, and a mismatch between them will lead
to stressful experiences.

With regards to the impact of stress on work performance, psychologists Robert Yerkes
and John Dodson proposed the Yerkes-Dodson Inverted-U law, which is an empirical rela-
tionship between stress and performance in an attempt to obtain optimal eciency from an
individual [25]. Yerkes-Dodson Inverted-U law argues that individual performance increases
with stress until the moment a limit value is reached, and decreases if this limit is exceeded.
This law is often depicted as a normally distributed curve on a graph as seen in Fig. 1.

Fig. 1 shows how as the stress level increases, the individual performance also increases.
The individual goes from a state of boredom to a state of increasing attention, until the
moment in which arrives to the optimal state. From this level, if the stress continues to
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Figure 1: The Yerkes-Dodson Inverted-U pressure performance curve [25]

increase, the individual will enter in a fatigue state and even can arrive to a level of strong
anxiety.

2.2. Agent-based simulation of stress

Based on the above theories, dierent agent-based simulation systems have been designed
in order to study stress and its impact on productivity on several scenarios. These systems
take into account job-related sources [9, 26]. M. Page [9] proposes a way to calculate the
stress factor as a relation between the work hours of an agent in a week (t), the maximum
possible work a maximal stress agent will achieve (β) and the rate at which stress impacts
an agent’s performance (α). This relation is shown in Equation 1. Then, the stress factor is
used to calculate the performance.

S(t) = β + (1− β)
1

1 + (αt)2
(1)

Instead, the work carried out by M. Duggirala et al. [26] stems from the Silverman’s
model [27]. This model, which has been particularly dened for modeling human behavior
in agents, states that stress is composed of three components: eective fatigue, time pressure,
and event stress, as shown in Equation 2.

Stress =
EF + ES + TP

3
(2)

Based on this model, dierent agent-based simulation systems have been proposed for
the analysis of dierent work-related policies. Harshal Hatatnagarkar et al. [28] analyze
the implications of using a workload buering strategy to manage work-related stress; M.
Duggirala et al. [26] conclude that understanding the impact of stress can help managers
to minimize the risk of crises while maintaining a team. All these solutions assume that all
stress components contribute equally to stress.
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Silverman’s model integrates the classic Yerkes-Dodson Inverted-U model [25] of stimuli
and performance with Janis and Mann’s taxonomy [29] of coping strategies under stress,
in order to develop a rich model describing the integrated stress and performance relation-
ship. As commented in the previous section, the Inverted-U model shows how an optimal
arousal level is required for eective performance: if arousal becomes too high, performance
decreases.

Our work proposes to advance in the state of the art of agent-based simulation models
for work-related stress by including ambient conditions, as well as other work conditions
such as working overtime hours or the interruptions caused by electronic communication
(email, messaging apps, etc.).

3. Scenario

To better understand the scope of the simulation system proposed, consider the following
scenario. DOC is a highly skilled IT SME that detects that the stress level of the workers is
too high, and this entails a decrease in their productivity and consequently in the company
revenue. The company wants to identify the causes of the increase in the workers’ stress level,
and to evaluate several regulation policies. Implementing stress level detection techniques
and regulation policies in the real scenario entails signicant costs for the company, so they
decide to address this challenge with agent-based simulation techniques.

With the purpose of analyzing and measuring the eectiveness of dierent stress regula-
tion policies, the human resources department designs four dierent policies:

Baseline. It is used as the reference of the current method of operation in the oce, and
represents the situation to improve. There is not an adaptation nor log system to
detect workers’ state or ambient parameters. There are several equipment available
to adapt the system, such as TV, lights, and Heating, ventilation and air conditioning
(HVAC) system. These equipment are manually controlled by the workers, so ambient
conditions such as noise, temperature or humidity may not have optimum values.

Ambient Adaptation. This strategy represents an environment where automation of
ambient conditions control has been implemented. This guarantees that ambient con-
ditions (such as temperature, humidity or noise) will always be near optimum values.

Workload Adaptation. The environment represented by this policy is an oce where
workload related tasks have been automated. This allows workers to congure rules
that automate some of their daily tasks, which turns out in a relevant time saving and
an increase in productivity.

Full Adaptation. This policy represents a whole automated oce where there is an
adaptation of both ambient and workload conditions.

Workers in DOC follow a schedule with the arriving time to work, the leaving time, the
overtime hour limit, the free time and the sleep time. In this way, the activity of workers is
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divided into four intervals: working, working overtime hours, free time, and sleep time. In
the working interval (from 9 a.m. to 5 p.m.), workers will work on the tasks that have been
assigned to them and will perform electronic communication related tasks such as reading
emails or messages applications. Sometimes they have nished all their tasks, and they can
go home earlier. However, there are also days in which they do not complete these tasks
before leaving time, so they have to work on them in the overtime interval. This overtime
interval may last until 2 hours each day. Once they have nished their tasks or have worked
for a maximum of 2 overtime hours, they go home and rest for the remainder of the day.

Following the Inverted-U Theory [25], each worker can be in one of ve states depending
on the stress level: lame [0, 0.2), inattention [0.2, 0.4), optimal [0.4, 0.6), fatigue [0.6, 0.8)
and anxiety [0.8, 1], as can be seen in Fig. 2.

Figure 2: Stress states

A worker with high productivity or performance can carry out more tasks in a shorter
period than an agent with a low level of performance. In that way, a worker with a no
optimal level of stress may result in absenteeism, that refers to the unscheduled number
leaves taken by a worker.

4. Agent-based simulation system

Once the scenario has been claried, we proceed with the description of the simulation
system design. In this section, an agent-based simulation system is proposed for the analysis
of stress regulation policies at the workplace. Details about the proposed model and its
implementation are given in the following subsections.

4.1. Model denition

The developed stress model is based on the Silverman’s stress model [27], which argues
that stress consists of three main components: Event Stress (ES), Time Pressure (TP), and
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Eective Fatigue (EF). On the basis of this model, we have studied the inuence of dierent
ambient and work factors in order to extend it. The diagram shown in Fig. 3 represents an
overview of the model design, showing the three components that compose stress along with
the features that contribute to them.

Effective fatigue

Time pressure

Event stress

Stress ProductivityAvailable time
Required time

Number of tasks

Rest
Email
Noise
Temperature
Music
Overtime

Silverman's model

Inverted-U model

Figure 3: Stress model

As can be seen in the gure, several factors that aect to eective fatigue have been
included. These factors are resting, electronic communication, noise, temperature, music
and overtime hours, and their contribution to eective fatigue will be described in the
following. The stress level is calculated following the Silverman’s model from the eective
fatigue, time pressure, and event stress. Finally, productivity is calculated from the stress
level using the Inverted-U model.

In this work we are considering a workplace scenario in order to measure workers’ stress
and productivity levels. In this context, Event Stress can be attributed to the arrival of a
high volume of work, Time Pressure to the relation between the time needed to complete the
pending tasks in an agent’s task queue and the remaining work time, and Eective Fatigue
to the accumulated tiredness that results of the execution of work-related tasks and the
impact of external conditions. Following the assumptions made by related works [26, 28],
we assume that all stress components have the same weight in the calculation of the total
stress.

S =
ES + TP + EF

3
(3)

Silverman’s stress model [27] states that all the elements that compound stress can
vary between 0 and 1.0, with 0 being over-condent and unstressed, 0.5 neutral, and 1.0
representing the state of maximum stress.

Silverman proposes to calculate Event Stress as a relation between the number of tasks
received in day and the mean number of tasks to which the worker is used to. This relation
is shown in Equation 4, where NT represents the Number of Task per day and MNT the
Mean Number of Tasks per day.

ES =
NT

2

MNT
(4)
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Therefore, if a worker whose average number of daily tasks is 20, one day receives 30, the
contribution of ES will be 0.75. In the same way, if another day receives 10, the contribution
will be 0.25.

Time Pressure derives from the relation between the required time to perform a task
accurately and the available real-time for the task. Silverman represents this relation with
Equation 5, according to the work proposed by Hursh and McNally [30]. In this equation,
Ti represents the ideal time required to perform a task and Ta represents the available time.

TP =
Ti

(Ti + Ta)
(5)

Hence, if an agent has pending tasks whose ideal performing time is 30 minutes, and
only makes 20 minutes available, the stress eect of TP will be 0.6.

Lastly, Eective Fatigue consists of the contributions of several parameters called Per-
formance Moderator Functions (PMF), that may be positive or negative stressors. Negative
stressors are those which increase eective fatigue, and include ambient temperature and
humidity, emails or messages received, sleep deprivation, noise, etc. Positive stressors, which
decrease eective fatigue, may be relaxing music, video, rest time, etc. Specically, in this
work, the PMFs included will be overtime hours, temperature, humidity, noise, rest time,
music and messages received. Silverman calculates EF as a normalized sum of all PMFs as
shown in Equation 6, where WPFMi represents the weight of the PMF, FTi represents the
fatigue tolerance of the agent to the PMF (0 ≤ FTi ≤ 1), and N represents the number of
PMFs.

EF =
1

N

N∑

i=1

(

negative stressors
  

WPMFi

WPMFi + FTi

−
WPMFi

10
  

positive stressors

) (6)

In order to include the most relevant PMFs for the smart oce context, the current
literature about stress sources has been exhaustively analyzed. The drawn conclusions from
this analysis are explained below.

An increase or a decrease of ambient temperature can result in stress for the worker,
causing a low-performance capacity. The impact of temperature and humidity on stress
can be determined using wet-bulb globe temperature (WBGT) [31]. WBGT is a type of
apparent temperature used to estimate the eect of temperature and humidity on humans,
whose simplied form, proposed by the Australian Bureau of Meteorology (ABM)1, can
be calculated from ambient temperature (Ta) and water vapor pressure (Vp), as shown in
Equation 7.

WBGT = 0.567 · Ta + 0.393 · Vp + 3.94 (7)

1Australian Bureau of Meteorology: www.bom.gov.au
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ABM also proposes Vp to be calculated as a function of the temperature and relative
humidity (RH), as shown in Equation 8. Relative humidity refers to the amount of the
moisture in the air, compared to the potential saturation level. This equation is a

Vp = 6.105 ·
RH

100
e

17.27·Ta
237.7+Ta (8)

Studies have demonstrated that the optimal level for the temperature factor is around
24oC with relative humidity of 40% [32], resulting in a WBGT of 22.23oC. In addition,
based on [33] it has been estimated that stress level increases between 4 and 9 percent per
degree on days when WBGT is above 27oC. If the WBGT level is quite high or low, it will
perceived as a negative stressor and will increase eective fatigue. However, if the WBGT
level is in the ideal limits, between 20oC and 25oC, it will be perceived as a positive stressor,
decreasing eective fatigue.

One way of coping with a demanding work situation is to work longer hours. However,
the relationship between fatigue and the number of work hours has been widely documented
in past research, demonstrating that overtime and longer working hours result in higher
levels of fatigue, errors and lower productivity. Singh et al. [34] use a relation where fatigue
level increases around 1% for each overtime working hour, so it will be considered a negative
stressor.

Rest breaks have been proposed as a mean of reducing discomfort, indicating that short
breaks may be benecial for worker productivity and well-being at work [35]. Consequently,
rest time will be considered a positive stressor that acts as the opposite to work overtime
hours.

Numerous research studies have conrmed noise as a primary cause of a reduction in
workers productivity, as it is regarded as a source of distraction, frustration, and stress.
Besides, it can contribute to stress and illness which, in turn, may produce absenteeism and
turnover of sta [36]. Studies show that ideal noise level at work must be between 48 and 52
dBA, and a level greater than 65 dBA involves an important reduction of productivity [37],
so high noise levels will be considered as a negative stressor. On the other side, listening to
relaxing music before a stress task dierently aects biological stress response domains, and
helps to recover from a stressor more eciently [38]. In this way, music will be considered
a positive stressor.

Other aspects that aect stress are time management [39] and the pressure of constants
notications [40]. In particular, mail processing has been detected as one of the most stressful
aspects in the workplace, as it involves an interruption of the current work. People who
daily receive a high number of emails perceive email as a great source of stress, experiencing
lower job satisfaction [41] and reporting greater work overload. Kushlev et al. proved that
people experienced reduced stress when the number of times they checked their email was
limited [42]. Also, email reception aects workers productivity as it involves an interruption
of the tasks in which they were working, taking an average of 23 minutes to get back to
the task [43]. In addition, nowadays social media and messaging apps have become popular
in the workplace, and they also result a way of interruption due to switching contexts.
Interruptions that disrupt concentration in a task are often detrimental, and switching tasks
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has been associated with higher stress [51]. Following these studies, we model the reception
of email or other messages as electronic communication.

With the purpose of designing the model as reliable as possible, the contributions of the
explained features to workers stress have been estimated following the explained researches,
as shown in Table 1.

Feature Contribution Description Source

Temperature
and

humidity

If WBGT ≤ 20 oC
or WBGT ≥ 25 oC:

WPMFt = 0.04 · |WBGT − 22|

An increase in the dierence
between the current WBGT and
the ideal WBGT (22 oC) will
increase the eective fatigue

E. Somanathan
et al. [33]

Overtime
hours

WPMFo = 0.021 ·Oh

Working overtime hours (Oh) will
increase the eective fatigue

M. Singh et
al. [34]

Rest time WPMFr = 0.016 · Rt

Taking a break (Rt) will decrease
eective fatigue

A. Dababneh et
al. [35]

Noise
If NL ≥ 65 dB:

WPMFn = 0.03 · (NL − 65)

If the noise level (NL) increases
over a certain limit (65 dB), the
eective fatigue will also increase

L. E.
Maxwell [37]

Electronic
communica-

tion
WPMFe = 0.0029 · Er

The eective fatigue will increase
with the number of emails or

messages received (Er)

K. Kushlev et
al. [42]

Table 1: Performance Moderator Functions contribution to eective fatigue

The parameters dened in Table 1 inuence stress, as they inuence eective fatigue.
Once the three components of stress are calculated, the stress can be determined. In addition
to the calculation of the stress level of the worker, the rate at which this stress impacts
worker’s productivity results very interesting, as productivity will usually be the feature to
maximize in a company. The integration of the Yerkes-Dodson Inverted-U model of stimuli
and performance enables the description of the relation between stress and performance. The
Inverted-U model shows that in order to achieve the maximum performance it is necessary
to have an optimal arousal level. If the arousal level overcomes that optimal level or if
it is not high enough, performance will decrease. Following the Inverted-U model [25], the
productivity of an agent can be calculated as a function of the stress, as shown in Equation 9,
where S represents the stress.

P =
1

0.4 ·
√
2 · π

· e−
1

2
(S−0.5

0.2
)2 (9)

The Equation 9 has been adjusted from the probability density function of a normal
distribution N (0.5, 0.04). The parameters of the normal distribution have been chosen in
order to have a function as similar as possible to the proposed by Yerkes-Dodson, limited
between 0 and 1 (as the stress level). Productivity (P ) will reach the maximum value of
1 when the stress level is 0.5 and will decrease as the value of stress moves away from its
optimal value.
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4.2. Model development

Once the theoretical aspects of the model have been explained, this subsection describes
the development of the simulation system where implementing the simulation model. The
simulation system has been designed with the primary purpose of enabling the represen-
tation of a smart oce in a reliable way. It has been implemented with Python 3.5 using
open source libraries. The core of the system has been developed using MESA [44], an
open-source Python package that enables the creation of agent-based models using built-in
core components or customized implementations. Furthermore, this framework enables the
analysis of the results using Python’s data analysis tools.

At a high level, the system consists of three main components: (1) a core that provides
the simulation services; (2) a data storage component that manages the data generated by
the simulation; and (3) a graphical user interface that allows the user to control the exper-
iment execution (starting, pausing, stopping it); selecting parameters (work and ambient
conditions, regulation policies, etc.); and executing strategies (number of workers, simula-
tion duration, etc.). The core has been developed using MESA; which provides some base
classes for agents, models, visualization and data collection. The user interface has been
implemented using Tkinter library2. Finally, for the analysis and visualization of the data,
Pandas and Matplotlib3 have been used. In this way, the developed system allows the user
to easily congure several aspects about the simulation using the graphical user interface.
Once the required parameters have been chosen, the system will create the model and the
agents, and the simulation will be run. The system will provide real time data via the
graphical interface while the simulation is running, and once it has nished, it will store all
the data for its later analysis and visualization.

Data Collection

Agent-based Simulation Model

Conguration

Sensor
data

Workers
data

carries out

reads

Worker Agent

Policies

Workload

Ambient

Tasks

Emails

perceives

Temperature

Humidity

Noise

Sensor

Time

Figure 4: Agent-based simulation system architecture

2https://docs.python.org/3/library/tkinter.html
3https://matplotlib.org
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The proposed system architecture is shown in Fig. 4. The architecture emphasizes on
the modularization of the system and on the easy conguration of the dierent scenarios.
The system structure depicted in Fig. 4 shows that the input-data is congurable from
a separated module, and the output-data is stored in a repository. This enables an easy
conguration of the dierent scenarios and regulation policies; as well as the data to be
extracted from the simulation. In the following, the dierent modules of the system are
described in detail.

The system makes use of two dierent classes for modelling the entities of the simulation:
objects and agents. Tasks, time, sensors and emails/messages are modeled as objects as they
do not behave as autonomous entities; while workers are modeled as agents.

Worker agent represents workers of the smart oce environment that perform several
actions such as carrying out tasks, reading messages or resting. In addition, these agents
may suer from stress when work or ambient conditions are not optimal, resulting in a
decrease of their productivity. Fig. 5 shows a diagram with all the actions performed by
this agent: at each step, the stress and productivity of the agent are calculated. Then,
if it has remaining unread emails or messages, under a certain probability dened in the
conguration it reads them during that step. Otherwise, in that step the agent works in
tasks or rests depending on the hour and on the pending tasks associated to it.

Worker Agent Step

Work time?
yes

no

Rest

with probability = (1 - emailReadFactor)

Remaining
emails?

yes

no

Remaining
tasks?

no

yes

with probability = emailReadFactor

Work in task

Read email

Calculate stress level
and productivity

Overtime?
no

Add overtime
contribution to stress

level

yes

Figure 5: Worker simulation step owchart

Besides this agent, four objects have been developed for modeling tasks, messages, sen-
sors, and time. These objects represent entities with properties that are relevant for the
simulation, and their main properties are listed in Table 2.

12



• Task object. It models the assignments that each worker has to complete, and
each one is assigned to a certain worker at a certain time. In addition, they have the
estimated and the remaining time required to nish them. Each task has an assignment
hour, and they are assigned to each worker along all day. All tasks have an estimated
duration of 25 minutes, and the number of them that are commissioned to an agent
in one day varies depending on the workload scenario.

• Email object. This object represents the reception of emails or other communication
messages. Emails are very similar to tasks, they have the reception time and the
estimated reading time for each one. The estimation of the number of emails read in a
day is based on the work done by Kostadin Kushlev and Elizabeth W. Dunn [42]. This
work proposes that the number of emails read in a day follows a normal distribution
with parameters N (12.54, 8.02). The email and message reception is distributed along
the day for each worker. The time dedicated to an email by the agent (in minutes) is
calculated in function of the time in reading the email (about 25 seconds), the time
in answering the email and the time in getting back to the task; resulting in a normal
distribution with parameters N (3, 0.5).

• Sensor object. Each sensor is responsible for measuring certain ambient conditions
(e.g. temperature, humidity, noise), that are relevant to stress estimation. In order
to provide the simulation with a greater reliability, the values for these variables are
obtained from real values by mean of the open weather API4 and the noise dataset
generated by The National Institute for Occupational Safety and Health (NIOSH)5.
This dataset provides several noise levels in dierent oce contexts.

• Time object. It provides the simulation with a measuring of the time, converting the
simulation steps to time. It has as properties the date and the hour, and methods for
dening when a new day or a new hour starts. Finally, also enables the identication
of the current interval of the simulation according to the time (working time, overtime
or resting).

Object Properties
Task Estimated time, remaining time, start time, assigned worker
Email Reading time, remaining time, reception time, assigned worker
Sensor Temperature, humidity, noise level
Time Date, hour, is new day, is new hour, interval

Table 2: Objects properties

Once described the agent and objects, we proceed to describe the core of the simulation
system: the agent-based simulation model. This module is responsible for managing and co-
ordinating the simulation. It creates and control objects and worker agents, and manages all

4Weather API: https://www.apixu.com
5Noise dataset: https://www.cdc.gov/niosh/data/datasets/rd-1005-2014-0/default.html
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the changes on them. This module gets the simulation settings specied in the conguration
(input-data), collects data during the simulation, and store these data at the repositories
(output-data). The input-data include the work conditions (required time for each task,
tasks arrival distribution, emails and messages reception distribution and the time spent
in reading them, etc.); regulation policies; ambient conditions (temperature, humidity, and
noise) and general parameters related to the simulation (number of workers, the equivalence
in seconds of each step).

Model Step

New day?

no

yes

Schedule tasks and

emails distribution

Assign initial tasksAssign tasks and

emails

New hour?
yes

Get sensors infoCollect data

Figure 6: Model simulation step owchart

Fig. 6 describes the process performed by the model at each step during the simulation.
At each step, the model checks if a new day has started. In this case, the model schedules
the tasks and email reception distribution for each worker for that day. This denes the
reception hour of each task and email. Then, it assigns the initial tasks to each worker.

Every hour, the model assigns tasks and emails to each worker according to the values
dened in the scenario; measures the dierent global parameters (average stress, remaining
tasks, etc.) and collects the data. This sequence will be repeated until the simulation is
nished. At this moment, the model retrieves the generated data and stores it. The collected
data are: stress level (with its three components), ambient data (temperature, humidity and
noise), productivity, remaining and nished tasks, read and pending emails, and overtime
hours worked.

5. Simulation results

In this section, the results of the simulations run for verifying the eectiveness of the
dierent regulation policies described in Section 3 are presented.
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Figure 7: Average stress level of workers for the dierent regulation policies

The rst metric to analyze is the stress level for each regulation policy. The team average
level of stress along the two months of simulation is plot in Fig. 7. As shown in this gure,
the workload automation policy has better results than the ambient automation. While for
the baseline policy the average stress of workers considerably increases during weekdays,
reaching values near to 0.8; the full automation policy achieves to stabilize the stress level
of workers near to the optimum value. It is also interesting to appreciate how the ambient
adaptation results eective for preventing peaks in the stress level, caused by peaks in the
ambient conditions.

Analyzing the average values of the stress components for all workers during all the
simulation, shown in Fig. 8, the eect of each policy can be appreciated. The gure depicts
that while event stress remains stable for all policies, eective fatigue and time pressure are
signicantly decreased with the regulation policies.

These gures show that from the point of view of reducing stress, the implementation
of an automation platform in the oce is worth. The automation of both ambient and
workload conditions controlling is the best policy to follow. However, seen that the workload
automation has a signicantly bigger impact that the ambient automation, the company
could consider to implement only the former, depending on its budget. Moreover, the
simulation also gives some relevant extracted parameters related to productivity, that are
shown in Table 3.

The table shows dierent metrics obtained from the simulation for the dierent regulation
policies, as the average productivity and stress; the average number of unread emails or
messages; and the average overtime hours worked; and average number of pending tasks
for each worker. As shown, these parameters signicantly improve with the application of
regulation policies.
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Figure 8: Average stress components levels for each policy

Baseline Ambient automation Workload automation Full automation
Average productivity (last day) 0.780469 0.793563 0.981176 0.986847
Average productivity (all days) 0.841826 0.870541 0.977049 0.986653
Average stress (last day) 0.753546 0.705455 0.529207 0.510618
Average stress (all days) 0.691424 0.662709 0.563505 0.534662
Average overtime hours 33.925708 33.175153 26.535347 25.945861
Average pending tasks 16.806667 15.369167 5.323333 4.810833

Table 3: Comparison between policies for productivity related parameters

6. Validation

This section describes the conducted experiments that have been carried out with the
purpose of validating the proposed model. The system has been validated using two dierent
methods: a sensibility analysis and a real experiment in a living lab. The sensibility analysis
has been done with the purpose of identifying the relationship between the involved variables
and their eects on the problem; while the real experiment allows us to determine the
reliability of the proposed model.

6.1. Sensibility Analysis

The model has been evaluated using two dierent sensitivity analysis methods: local
analysis approach and global analysis. The former studies small input perturbations on
the model output, while the later the whole variation range of the inputs [45]. In order
to analyze the inuence of the dierent inputs of the system, several scenarios have been
dened:

Ambient conditions: three dierent scenarios have been proposed (low, medium and
high temperatures) obtaining temperature and humidity data from an open weather
API for dierent months.
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Automation: four scenarios have been dened, representing the four stress regulation
policies previously described in Section 3.

Workload scenario: three dierent scenarios have been proposed, with dierent workload
values (low, medium and high).

To bring about the One-at-Time (or local analysis) method, 100 simulations have been
launched considering the dierent scenarios (10 for each proposed scenario). Fig. 9 shows
the results of the local analysis for the average stress level.

Figure 9: Local analysis applied to the stress level

As can be appreciated, all scenarios signicantly inuence stress levels. Changes in the
ambient conditions have an impact of between 3% and 5% on average stress level. With
regards to the automation scenarios, the Fig. 9 shows that while ambient automation only
decreases stress between 2% and 4%, workload automation decreases it around a 12%, and
the combination of both policies achieves an improvement of near a 15%.

The global analysis has been carried out using Morris method [46], with the SALib library
for Python [47]. This method enables the classication of the inputs in three groups: with
negligible eects, with large linear eects without interactions and with large non-linear
and/or interaction eects [48]. A total of 200 trajectories were built for the model, with
the dierent scenarios described above. The Morris indices are detailed in Table 4. These
indices show the inuence of the dierent scenarios on stress level, and state that workload
conditions are the variable that has a greater impact on it. Fig. 10 plots these results on a
graph, enabling their visual analysis.

Parameter µ µ∗ σ

Ambient conditions 0.0161784 0.0449908 0.0332322
Workload scenario -0.0788225 0.167113 0.158649
Automation scenario -0.112608 0.112608 0.0150309

Table 4: Morris indices for the stress level
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Figure 10: Morris analysis applied to the stress level

The results of the Morris analysis show that the highest µ∗ value is for the workload
scenario, conrming that it is the most inuencer input parameter for the stress. These
results also show the importance of the automation scenario, with a µ∗ value of 0.11. In
the Fig. 10 we can also analyze the ratio σ/µ∗, that enables the characterization of the
input parameters in terms of linearity and monotonicity. Both ambient and workload are
non-linear and non-monotonic, while automation is non-linear but monotonic.

The presented methods attempt to validate that the inuence that the dierent input
variables have on the output is reasonable with the expected from the model design.

6.2. Experiment

As already stated, the main contribution of this work is the design of a stress model that
takes into account ambient and workload conditions, and its implementation in an agent-
based simulation system that enables the analysis of dierent stress regulation policies. For
the analysis of these policies, three hypotheses have been raised:

• H1: The use of adaptation techniques helps to regulate stress level of workers who are
under stressful conditions.

• H2: The proposed model is reliable and adequate.

• H3: The use of stress regulation policies improves workers productivity.

In order to evaluate the proposed system with respect to these hypotheses, an experiment
with real users has been performed. For this experiment, a prototype of the proposed
system has been deployed, which includes the following components. The stress of the
participants is detected from biometrical signals (by mean of the Empatica E4 wristband)
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and a survey. Some actuators implement both hearing and visual signals using a variety of
devices. Detailed information on materials is given in Sect. 6.2.2. This section covers the
design, results, and conclusions drawn from the experiment, focusing on its scope.

6.2.1. Participants

The experiment included 20 participants. Their ages ranged from 18 to 28 years, all of
them university students with a technical background, of both genders. Since the proposed
system is primarily oriented to technical work positions, this selection is oriented to validate
the system with participants that are currently working in technical environments or will
do in the future. With this purpose, the selected participants were fellows in our research
group or other research groups in the university. In this way, we tried to simulate the oce
conditions in order to make the scenario of the experiment as similar as possible to a real
scenario. Participants were informed that they were performing an experiment, and provided
with detailed information about the data collected in the experiment. However, they were
not aware of the purpose of the study in order to exclude the inuence of knowledge on the
results. The ethical approval for the experiment was obtained by the Ethics Committee of
the Technical University of Madrid.

6.2.2. Materials

The material used for this experiment is varied, as the proposed system needs several
devices to properly function:

• Empatica E4 wristband6. The E4 wristband is a wearable research device that of-
fers real-time physiological data acquisition and software for in-depth analysis and
visualization.

• Room lighting (WS2812B LED strip controlled by WeMos ESP8266 board) that is
used as an actuator on the light level of the room, with the possibility of using several
lighting patterns.

• Google Chromecast [49] that transmits content in a local computer network.

• LG TV 49UJ651V. This device is used for displaying images and videos.

• Google Home. The system uses this device for simulating oce noise.

Participants accessed a Jupyter notebook using a computer with the Firefox browser7.

6https://www.empatica.com/research/e4
7https://www.mozilla.org/en-US/refox/desktop/
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6.2.3. Procedure

During the experiment, the participants have to complete a total of six tasks, which
consist of programming problems obtained from Project Euler8. These tasks have an average
duration of 5 minutes each one, so participants should be able to resolve all of them in 30
minutes. After the 30 minutes, participants could work on the tasks for other 7 minutes, in
order to simulate overtime hours.

Two tasks are assigned to the participant at the beginning of the experiment, while the
others are assigned at a certain hour, simulating the task arrival in a real workplace. When
a participant nishes a task, he/she gives the response to the evaluator, who checks if the
answer is correct and records the time that the participant has spent on the task. If the
answer to the task is incorrect, it is given back to the participant. An example of a task is:
“If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and
9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000”.

In addition, participants have to perform short but urgent tasks which consist of short
questions that must be searched on the Internet, with an estimated duration of 1 minute.
These short tasks simulate interruptions such as distractions or email reception. An example
of a short task is: “Which was the release date of the rst version of Python?”.

Also, a questionnaire is given to each participant in three times: at the beginning of the
experiment, after 15 minutes and after 30 minutes. This questionnaire is intended to obtain
the perceived stress level of each participant, and the raised questions are summarized in
Table 5. The questions were designed following a 10-point scale. Dierent options were
studied for the choice selection and, after analyzing the dierent options, we opted for a
10-point scale. Some of the benets that we found in the use of a 10-point scale were better
variance and better opportunity to detect changes [52]. In addition, the participants in the
experiment are used to a 10-point scale, as it is the scale used for the grades in Spain schools
and universities).

No. Question formulation
Q1 From 0 to 10, what is your current stress level?
Q2 From 0 to 10, how stressful the number of pending tasks is?
Q3 From 0 to 10, how stressful is the remaining time available for nishing all tasks?
Q4 From 0 to 10, how stressful are current ambient and personal conditions?

Table 5: Questions raised to the participants

At the beginning of the experiment, the Empatica E4 wristband is given to each partic-
ipant, in order to capture biometric data while they perform the tasks. This biometric data
is used for analyzing the stress level of each participant.

The experiment nishes when the participant has completed all the tasks or when the
37 minutes (regular time of 30 minutes plus overtime) have nished.

8https://projecteuler.net/

20



6.2.4. Design

The experiment was a within-subject design. As previously stated, the controlling factor
is the use of the adaptation techniques, which has two levels, activated and not activated.
The automation use factor is counterbalanced using a Latin square so that the participants
are divided into two groups: the control group and the treatment group. Participants in
the control group performed the experiment without any kind of adaptation or automation;
while participants in the treatment group performed the experiment with the adaptation
system enabled. Both groups were formed by the same number of participants.

The workplace scenario consists of a small oce, where participants have a computer
with an opened Jupyter notebook o in the Firefox browser, where they must resolve the
programming problems. In order to simulate oce noise, an audio containing 2 hours of
oce noise9 is played in the Google Home device. When the adaptation is activated, a
relaxing video10 is cast to the smart tv and the room lighting changes using lighting patterns
with coloured lights that slowly vary in intensity and colour.

6.2.5. Results and Discussion

In order to tackle the hypothesis, both biometric data and questionnaire results have
been analyzed. The Empatica device provides BVP data extracted from a PPG (Photo-
plethysmography), the average heart rate (extracted from the BVP signal), and the time
between individual heart-beats (IBI data, also extracted from the BVP data). Two features
for detecting stress level can be obtained from these data: SDNN (standard deviation of
heart rate intervals) and pNN50 (ratio of pairs of successive heart rate intervals that dier
by 50 ms or less). On the other side, the questionnaire results provide the perceived stress
of participants of the experiment during the performing of the tasks.

The results from the questionnaire show that the stress level in the adaptation part is
lower than with no adaptation, as shown in Fig. 11. These results support H1, concluding
that users feel more inclined to use the adaptation system rather than performing the task
without adaptation. The analysis of the results of this question reveals that users feel more
comfortable with the environment adaptation for the completion of the task.

With regards to the biometric analysis, SDNN and pNN50 results can be seen in Fig. 12.
The following table, proposed by V.J.Madhuri et al. [50], can be helpful for analyzing the
results of SDNN. As shown in the table, a bigger SDNN means a lower stress level, while
a lower SDNN means a higher stress level. Our results shown in Fig. 12 show that in the
three periods the SDNN has a greater value for the the adaptation scenario. In the case of
pRR50, we can see how its value signicantly increases during the middle period for the no
adaptation scenario, indicating an increase in stress level.

Finally, we present some quantitative data related to the experiment. The average num-
ber of tasks nished by the participants is 3.74 for the adaptation scenario, and 2.87 without
adaptation; the average time dedicated to each task is of 9.8 minutes for the adaptation sce-

9Oce noise: https://www.youtube.com/watch?v=D7ZZp8XuUTE
10Relaxing video: https://www.youtube.com/watch?v=4inYSp-RWtU
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Figure 11: Questionnaire results

SDNN (ms) Stress level
25-55 Highly Tense
55-110 Slightly Tense
110-180 Midly Calm
180-215 Quietly Relaxed
215-230 Deeply Relaxed

Table 6: Stress level from SDNN [50]

nario and 12.8 for the no adaptation scenario; and the minimum time required to nish a
task was of 4 minutes for the adaptation scenario and 6 for the no adaptation scenario.

These results support H1 in the same way that the questionnaire; and also H2, indicating
that users’ productivity is improved with the use of stress regulation policies. In addition,
these results are adequate with the expected from the simulation results, conrming that
the use of agent-based simulation can help to identify stress causes, design stress regulation
policies, and thus, to prevent stress.
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Figure 12: Biometric analysis results

7. Conclusions

In this work, an agent-based simulation system to analyze stress regulation policies at
the workplace has been developed. This system implements a stress model also proposed in
this paper, that takes into account both workload and ambient conditions for determining
stress and productivity levels of workers. The proposed system enables the simulation of a
smart oce in order to analyze the evolution of workers’ stress and productivity over time;
and allows users to congure custom adaptation policies in an easy way.

In addition, this paper also shows the result for the analysis of four dierent stress regula-
tion policies, measuring the inuence of dierent adaptation levels on stress and productivity.
These results show that ambient conditions adaptation does not result particularly eective
for regulating stress at the workplace by itself, but combined with workload adaptation, it
achieves a decrease of a 10% in workers’ stress. The sensibility analysis performed to the
model conrms this result, showing that between all the variables, the workload condition is
the one that aects in a more signicant way to stress and productivity. Finally, the results
of the experiment in a living lab validates these results. The answers to the self-reported
questionnaires demonstrate the positive eect of the adaptation for regulating stress, and
also the results obtained from the analysis of the biometric data show that stress levels are
lower when there is adaptation.

We are currently exploring some lines of future work that stem from this work. Firstly,
we aim at integrating dierent personalities for the agents that represent the workers, with
dierent ways of coping with the workload and ambient conditions. Also dierent ways of
coping with tasks or messages reception depending on the agents’ mood could be studied.
Secondly, another possible line of future work that we are currently investigating is the
integration of room oces and locations in the model, in order to analyze the stress contagion
between workers who work together. Finally, the third line of future work is to improve the
validation method with more experiments, increasing the number of participants, and also
including a pairwise comparison method in order to improve the accuracy. These advances
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would give more reliability to the model.
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