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Robust Visual Semi-Semantic Loop Closure Detection by a
Covisibility Graph and CNN Features

Silvia Cascianellia,∗, Gabriele Costantea, Enrico Bellocchioa, Paolo Valigia, Mario L.
Fravolinia, Thomas A. Ciarfugliaa

aDepartment of Engineering, University of Perugia, via Duranti 93, 06125, Perugia, Italy

Abstract

Visual Self-localization in unknown environments is a crucial capability for an au-

tonomous robot. Real life scenarios often present critical challenges for autonomous

vision-based localization, such as robustness to viewpoint and appearance changes. To

address these issues, this paper proposes a novel strategy that models the visual scene

by preserving its geometric and semantic structure and, at the same time, improves

appearance invariance through a robust visual representation. Our method relies on

high level visual landmarks consisting of appearance invariant descriptors that are ex-

tracted by a pre-trained Convolutional Neural Network (CNN) on the basis of image

patches. In addition, during the exploration, the landmarks are organized by building

an incremental covisibility graph that, at query time, is exploited to retrieve candidate

matching locations improving the robustness in terms of viewpoint invariance. In this

respect, through the covisibility graph, the algorithm finds, more effectively, location

similarities by exploiting the structure of the scene that, in turn, allows the construc-

tion of virtual locations i.e., artificially augmented views from a real location that are

useful to enhance the loop closure ability of the robot. The proposed approach has

been deeply analysed and tested in different challenging scenarios taken from public
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Figure 1: Graph Of Covisible CNN-Extracted features for semi-semantic visual Place Recognition: exemplar

created graph.

datasets. The approach has also been compared with a state-of-the-art visual navigation

algorithm.
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1. Introduction

In the last decade, vision-based navigation systems have achieved impressive re-

sults [1, 2], considerably extending the application area of many robotic platforms.

However, it is well known that, during long term operations, the localization perfor-

mance may drop due to the drift of the estimation procedures, which can lead to a5

critical failure of most state-of-the-art systems. As a consequence, place recognition

capabilities are crucial functions for loop closure detection and to increase the robust-

ness of the overall estimation process.

Most of the existing place recognition strategies have been developed consider-

ing image sequences characterized by small viewpoint and lighting variations [3, 4, 5]10

and, within these scenarios, the results obtained are very promising. However, these

simplified conditions do not hold in real life autonomous exploration contexts, where
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the visual scene is typically affected by a number of challenging problems. For in-

stance, seasonal or weather changes, natural or artificial daily illumination variations

may severely affect the global appearance of the scene; further, dynamic elements,15

e.g., pedestrians, vehicles or new static objects may cause appearance changes, since

they can occlude or alter portions of the scene. In addition, traversing the same envi-

ronment with different orientations can change the scene viewpoint, which may alter

significantly the relative position of objects in the scene.

Place recognition algorithms that exploit low level visual features [3, 4] are typi-20

cally very sensitive to strong image variations and, therefore, they do not provide good

place recognition performance. Recent works [6, 7, 8] have shown that high level vi-

sual features, i.e., semantic cues, provide a more robust representation of the scene

since they also encode information about object categories and their mutual relations.

In fact, semantic features provide a better characterization of the scene, which may25

facilitate the place recognition process by an autonomous robot. However, the detec-

tion of different objects may not be enough to unequivocally identify a specific place

(e.g., cars and buildings could be not discriminative in an urban environment). In these

scenarios, the capability to discriminate between different spatial configurations and

different views of the objects is crucial.30

Motivated by the previous considerations, we have worked out a vision-based place

recognition system that relies on a graph of semantic visual objects (see Figure 1, where

it is shown the graph produced by our algorithm using 623 images taken from the IDOL

dum sunny3 + dum cloudy1 dataset [9]) that is built incrementally during navigation.

In order to improve the robustness with respect to appearance changes, the graph was35

built in such a way that the nodes collect similar image patches that are represented

by high level descriptors extracted by the inner convolutional layer of a public CNN

trained specifically for object recognition purposes [10].

Furthermore, to handle viewpoint changes and to ease the place recognition task,

the edges of the graph are used to encode covisibility information, that is edges are40

created to connect the objects that have been observed together from the same point of

view. The result is a covisibility graph [11, 12] that takes into account mutual object

arrangements. In addition, the graph structure is exploited to build virtual locations
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[13] in a new strategy that relies only on graph algebraic properties. Virtual locations

represent synthetic views of the scene that are not present in the image database. As45

a consequence, the algorithm has the potential ability to recognize places even in the

presence of strong viewpoint changes.

To summarize, the main contributions of this work are:

• The employment of semi-semantic features extracted by a pre-trained CNN on

the basis of image patches, which are robust to appearance changes, in a cov-50

isibility graph-based model of the environment, which enhances the viewpoint

robustness of the place recognition algorithm.

• The development of a procedure for the construction of artificial virtual locations

via a novel parameter-free approach that exploits the covisibility graph properties

to face critical loop closure detection situations.55

• The extension of the work in [14], with a different strategy for virtual location

construction and with a deeper experimental analysis on the performance of each

part of the proposed algorithm, which was evaluated on an extended number of

datasets with respect to the work [14].

To the best of our knowledge, apart from [14], there are no previous applications that60

use high level features extracted by a CNN as nodes of a graph to build an incremental

model of the environment during the exploration. Another important specific novelty

of this study is the development of a parameter-free procedure for inferring artificial

views on the basis of the developed graph model.

The remainder of this paper is organized as follows. In Section 2, related work is65

discussed, while in Section 3 the graph construction procedure is described. Section 4

describes the pipeline of the algorithm and Section 5 provides a detailed description of

the experimental results. Conclusion and future development are discussed in Section

6.
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2. Related Work70

Place recognition and loop closure detection are strictly related problems that are

particularly important for autonomous robotic navigation in unknown environments.

The main challenges for autonomous visual navigation in real life scenarios are view-

point and appearance changes. A short categorization of the main research directions

is provided below.75

2.1. Appearance invariant approaches

The appearance change issue is typically faced via change removal methods, as in

[15], via change prediction, as in Neubert et al. in [16], or by computing visual de-

scriptors that exhibit invariance properties to appearance, as in [17], where the authors

trained a multi-layer perceptron model to learn an appearance invariant set of descrip-80

tors. Among appearance invariant descriptors, features obtained from the inner layers

of CNNs (that were pre-trained for object recognition tasks) have shown their effective-

ness, as shown for instance in [18]. In particular, the authors in [15] and [19] were able

to reduce significantly the effects of daily shadow and sunlight by transforming images

in an illumination invariant colour space. The authors in [16] exploited the repeata-85

bility of the seasonal appearance changes, and built a super-pixel dictionary specific

for each season and opportunely translated images captured in different seasons before

matching. Authors in [17] studied the local changes of appearance of image patches

subject to variation in lighting conditions and trained a multi-layer perceptron model

and a convolutional multi-layer perceptron model for learning an appearance invariant90

feature descriptor. In [18, 20] the authors extensively studied the appearance and view-

point invariance properties of the outputs produced by different layers of pre-trained

convolutional neural networks, specifically designed for object recognition and scene

categorization. They demonstrated that the inner convolutional layer outputs provide

robust appearance invariant features, while higher fully connected layers provide view-95

point robust features.

5



2.2. Viewpoint invariant approaches

Viewpoint changes are usually more critical than appearance changes. Some suc-

cessful Simultaneous Navigation And Mapping (SLAM) systems exploit, as loop clo-

sure detection modules, Place Recognition methods that are based on local invariant100

features. Some examples are FAB-MAP [3], which is based on SURF [21] features

and ORB-SLAM [22], which is based on ORB [23] features. However, for visual

Place Recognition algorithms viewpoint change is still a critical issue. Viewpoint in-

variance is generally addressed in an application dependant fashion, either by applying

image rectification methods in case of mild viewpoint changes [24], or by considering105

the specific type of changes in the viewpoint that will be encountered while performing

a specific task e.g., [25, 26, 27]. In particular, the authors in [24] estimate and nor-

malize affine parameters of local transformations in the images, but their approach is

applicable only to objects with regular structure, as e.g., buildings. Some heuristics or

solutions designed for specific environments are applied to perform visual Place Recog-110

nition in case of specific severe viewpoint changes, such as in case of lane traversal in

[25], panoramic vision in [26] or air-ground viewpoint change in [27].

2.3. Appearance and viewpoint invariant approaches

Scenarios characterized both by viewpoint and appearance changes are particularly

challenging for the loop closure detection task. Promising solutions usually rely on115

CNNs specifically designed for place recognition [28] or on features extracted from

a CNN designed for object recognition [6], or viewpoint synthesis [29], or exploiting

robust sequence matching techniques [25].

2.4. Graph-based approaches

Modelling the environment as a graph requires the definition of what ”a node is”120

and of a criterion that defines the node connection mechanism. In order to preserve

geometric information, in [7, 8] a geometric graph based on the distance between cen-

tres of 3D point clouds or 2D patches around a landmark was proposed. A recent

work by Pepperell et al. [30] focused on maze urban environments and used roads as
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directed edges connecting intersections to facilitate sequence matching in place recog-125

nition. Another general criterion for building graphs of the environment, while dealing

with bidimensional images, is based on the covisibility of the landmarks, i.e., an edge

is created between landmarks if they are present in the same image. This approach

was proposed in [13] and is also adopted in this work, with the important difference

that, instead of using hand-crafted descriptors, we use features extracted by a convo-130

lutional layer of a pre-trained CNN that receives as input unprocessed image patches.

Using a graph to model the environment allows the integration of additional informa-

tion from other sources, such as robots or other intelligent systems. Hence, it provides

a framework that can be easily integrated with network information, and with other en-

vironment specific visual object galleries following a transfer learning paradigm [31].135

3. Incremental Covisibility Graph Construction

In this study we assume that the autonomous robot does not have at its disposal

any prior information on the environment, that is, the visual exploration starts from

scratch. As a new image is captured, patches containing objects are extracted and then

processed by a CNN. The outputs of an inner layer of the CNN, along with the dimen-140

sions of the patches, are used to build a graph-based representation of the environment

and to enrich the collection of landmarks encountered as the exploration progresses.

In Figure 2 a block diagram of the operations performed in this knowledge acquisition

phase is shown; below, the building blocks of this scheme are described in detail.

3.1. Semi-semantic Landmarks Extraction145

The model of the environment is here obtained using high level visual landmarks

extracted from the the scene acquired by the robot during navigation. For each new

image the landmarks are derived from the processing of image patches that are likely

to contain a generic object. In this work the number of extracted patches per frame is

constant and fixed at 50. To obtain these patches we apply the algorithm by Zitnick150

et al. proposed in [32], named Edge Boxes, which efficiently detects a bounding box

around a patch (of variable size and dimensions) that contains a high number of internal
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contours compared to the number of contours exiting from the box. This fact indicates

the presence of an intelligible object in the enclosed patch. The visual content of these

patches, however, is not associated with an ’object label’ i.e., the Edge Boxes algorithm155

does not provide any object categorization for the object within the patches. For this

reason our method can be considered a ”semi-semantic” approach.

The 2D patches extracted by the Edge Boxes algorithm are directly processed by

a pre-trained CNN and the output produced by an inner layer of the CNN is used as

descriptor vector of the patch.160

The strategy of using, as descriptors, the outputs provided by inner layers of a

pre-trained CNN was proposed by some authors as in [33, 18, 34] thanks to the high

representational power of deep nets.

In this study, we use the pre-trained AlexNet CNN [10], that is a well-known CNN

used for Object Recognition, and select the output of the conv3 layer as descriptor165

vector. This choice is mainly motivated by the study reported in [18], where the output

descriptors provided by the different layers of some CNNs for Object Recognition and

Place Recognition were compared in order to find the best descriptor vector for the

Place Recognition task. In particular, the authors of [18] demonstrated that in case of

viewpoint changes, AlexNet has a slight performance improvement compared to CNNs170

trained on location-based images if considering the whole images. The same authors

in [6] demonstrated that using region-based features rather than whole-image features

provides a benefit in terms of viewpoint robustness. Since our region-based features are

extracted on the basis of image patches containing objects, we decide to use AlexNet

as feature extractor.175

AlexNet works on fixed size images, while Edge Boxes produces patches with arbi-

trary dimensions, therefore we resize them in order to fit the AlexNet input dimensions.

In order not to lose the original size information, the height and width of the patch are

considered as additional descriptors, together with the conv3 output vector.

The conv3 layer output is a vector of 13×13×384 = 64896 elements that provides180

a redundant representation of the input image which is useful to better discriminate be-

tween classes of objects. Considering that in the robotic exploration it is important

to limit the real time computational load we decide to reduce the dimensionality of
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conv3 output by applying the Gaussian Random Projection method [35] obtaining a

reduced vector of length 2048. This reduction does not significantly deteriorate match-185

ing performance, since Gaussian Random Projection provides a good approximation

of radial metrics that are typically used to measure the similarity between vectors (as

the Euclidean distance or the cosine similarity). The choice of the size for the reduced

dimension of the conv3 output has been made considering both the results of the study

in [6] and additional parametric studies that were carried out on the Gardens Point190

day-left and day-right dataset [18].

The Edge Boxes patches, described by the reduced AlexNet conv3 output pq and

their width wq and height hq (i.e., by triples < pq, wq, hq >), constitute the semi-

semantic landmarks that are used as basic components of the graph-based representa-

tion of the environment.195

3.2. Graph Nodes and Edges

The characterization of a graph requires the definition of its nodes and edges. In-

spired by the work of Stumm et al. [13], we build a covisibility graph that models

the environment as a structured collection of visual landmarks, acquired sequentially

during the environment exploration.200

In particular, the nodes of our graph are built on the basis of the semi-semantic

landmarks (described in Section 3.1) using the procedure described in details in Section

3.3.

Covisibility information is modelled by connecting the nodes belonging to the same

image by an unweighted edge, i.e., nodes observed from the same point of view are205

connected. Landmarks in the same image are therefore fully connected, forming a

complete subgraph for that image.

This node connection policy encodes proximity relations among patches (and their

enclosed objects), but it is not strictly related to any metric distance information, that

is objects that are metrically distant may be connected in the covisibility graph and210

metrically close objects (because of visual occlusions) can be not connected. Hence,

our method does not rely on the metric position of the patches but uses only visual

information.
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3.3. Mapping Landmarks into Nodes

In the previous section we described how we build the covisibility subgraph of a215

new acquired image during the exploration.

Now, in order to incrementally build the graph of the whole environment, we need

to specify how to connect each new subgraph to the current graph. This is carried out

by mapping the landmarks extracted from a new image in nodes of the graph. For

the first image (i.e., at the beginning of the exploration), a node is created for each220

of the extracted landmarks. For the following images, new nodes are added only for

new landmarks, while the landmarks having small distance from existing nodes are

considered as ”already seen landmarks” and are therefore mapped in the best matching

existing node. An illustration of the graph building process is shown in Figure 3 while

in Figure 4 we report an example of nodes that are generated by our algorithm on the225

Gardens Point day-left and day-right dataset [18] and the visual patches contained in

these nodes.

In this study the similarity between landmarks is measured using the scalar cosine

distance dij between the feature vector pq,i of the i-th landmark in the current image

and the one it is most similar to, pc,j taken among all the landmarks in the previous230

images.

To speed up the search for the most similar landmark, we exploit the KD-Tree

algorithm proposed in [36]. This algorithm works only with distance metrics that are

component-wise additive and monotonically increasing with components addition, as

in the case of the Euclidean distance. Cosine similarity is more suitable than Euclidean

distance for high dimensional data, but does not exhibit the characteristics requested

by the KD-Tree algorithm. This technical problem is overcome by first calculating

the Euclidean distance between l2-normalized feature vectors and then applying the

following transformation:

dij = 1− dEuclidean,ij

2
(1)

where dEuclidean,ij is the Euclidean distance and dij is the scalar cosine distance be-

tween the landmarks pq,i in the current image and pc,j in the previous images.
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For each most similar pair of landmarks we also calculate the ”dissimilarity” mea-

sure of the geometric shape of their bounding boxes sij . The definition of sij is taken

from [6]:

sij = exp

{
1

2

( |wq,i − wc,j |
max {wq,i, wc,j}

+
|hq,i − hc,j |

max {hq,i, hc,j}

)}
(2)

Values of sij that are close to 1 indicate that bounding boxes are similar, while larger

values indicates differences in their area and shape.

The overall similarity between landmarks in the current image and the most similar

landmarks in the previous images is then computed as:

Pij = 1− dij · sij (3)

Values of Pij that are close to 1 indicate that the two considered landmarks have both

very similar shape and conv3 feature descriptor, while small values indicate a difference235

that can be due to both shape and conv3 features; negative values indicate a relevant

difference in the shape of the patches. Using the shape dissimilarity coefficient sij as a

multiplicative factor enhances the cosine distance dij between the conv3 features. This

allows the information on the shape of patches, that is lost (as explained in Section 3.1)

because of the resizing of the patches that is requested to use the AlexNet CNN, to be240

taken into account.

Finally, landmarks are considered to be ”the same landmark” (and therefore mapped

in the same node of the graph) when the overall similarity Pij is larger than a user

defined threshold. The higher this threshold is, the more similar are the landmarks con-

tained in the same node. However, the algorithm becomes slower because of the fast245

growth of the whole covisibility graph, while the overall recognition performances are

not significantly improved.

It is important to note that a new image produces at most as many new nodes as the

maximum number of patches extracted by the Edge Boxes algorithm (50 in this study)

since very similar (overlapping) patches are mapped in a unique node.250

The analysis of Figure 4 highlights some important characteristics of the nodes that

are built with the above procedure. Specifically, different nodes can include scaled ver-

sions of the same landmarks (e.g., nodes A, B and C); the same node can include some
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outlier patches (e.g., nodes F and J) because of the resizing needed to feed AlexNet; in

the same node there can be clusters of patches, similar to each other, since we associate255

new landmarks to a node computing the similarity with the whole set of landmarks

associated to that node and not simply with a ”centroid” landmark for that node (e.g.,

node G).

3.4. Graph Representation

In practice, the computed covisibility graph is encoded and managed using a sparse260

clique matrix, Mclique, whose rows represent nodes and whose columns represent im-

age indices, so that a 1 in Mclique[p, f ] means that the node p is present in the image

f .

The graph growth due to the allocation of a new node is implemented by the fol-

lowing matrix update:

Mclique

∣∣
k−1 =




. . . 1
... 1
... 1

. . . 1



→Mclique

∣∣
k
=




. . . 1 1
... 1 1
... 1 1
... 1 0

. . . 0 1




(4)

where in (4) a new column is added for the current image, which has 1s in the existing

rows corresponding to already observed landmarks. In addition, when a landmark is265

assumed to be new, then a new row is allocated, having a 1 in the column associated to

the last image, where the landmark was observed (allocated) the first time.

The representation via a sparse matrix also provides an efficient indexing for the im-

age dataset. In fact, considering the definition of the Mclique matrix, we know that the

rows that are associated with a specific landmark contain ones in positions correspond-270

ing to the indices of images where that landmark has been observed, and, conversely,

for each image we can know which landmarks belong to that image. This information

can be obtained in constant time.

It is instructive to look at the 2D geometry of the clique matrix. For this purpose

we generate the clique matrix from the City Centre benchmark dataset [3], that is char-275
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acterized by a trajectory that is traversed twice. In this representation, zeros are white

dots, while ones are black dots. The corresponding clique matrix (shown in Figure 5)

presents a repeating nodes pattern in the image indices corresponding to images col-

lected during the two traversals of the same path. This indicates a loop, since the

algorithm recognizes many landmarks allocated during the first traversal, along with a280

few new nodes that are specific of the second traversal.

It is also observed that, due to the presence of already acquired landmarks, the

Mclique matrix has a growth rate slower than 50 new nodes per image: for example, in

the City Centre Dataset, which contains 1237 images, our algorithm creates 8326 nodes

instead of 50×1237 = 416300 nodes. It is expected that the continuous exploration of285

the same environment will tend to decrease the allocation rate of new nodes over time.

This aspect is very important for robotic applications because, for a space constrained

environment, we expect a sort of saturation effect to slow down the graph growing

process, thus limiting memory consumption of our system.

4. Place Recognition Algorithm290

In this section the proposed place recognition algorithm whose block diagram is

shown in Figure 6 is described. The purpose of this algorithm is to find possible match-

ings between the current image (that in this phase is called ”query image”) and a subset

of the most promising images in the set of images (called ”image collection”) that has

been acquired previously (also named as ”candidate images”). In particular, the place295

recognition algorithm is based on the visual modelling of the environment described in

Section 3. The matching score between images is computed taking into account two

aspects: the mean similarity of landmarks in the query and candidate images and the

similarity between images subgraphs. In addition, in order to facilitate the detection of

possible loop closures in critical points along the path, a mechanism that produces ar-300

tificial ”enlarged views” (also named ”virtual locations”) on the basis of the candidate

images is proposed.
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4.1. Candidates Retrieval

In this section the first block of the system which exploits the covisibility graph is

described. Considering a query image, we select, from the whole image collection only305

a subset of images to be further analysed for the detection of possible loop closures.

In particular we retrieve the images that share at least a minimum number of nodes

(this number is a free design parameter) with the query image. The sparseness of the

clique matrix allows us to efficiently identify (in constant time) the candidate images

that fulfil this retrieval criterion.310

In this work, the retrieval criterion is ”unselective” and all the images that share at

least one node with the query one are retrieved. It should be noted that a more selective

criterion could be used, improving the speed and precision of the entire algorithm.

In fact, a more selective criterion automatically excludes from the analysis many true

negative matching images, so that the retrieved images are only those sharing a large315

number of landmarks with the query image, thus the loop closure detection system

would prove to be more precise. However, a selective criterion also has the potential

drawback of inducing a possible recall drop (i.e., the fraction of relevant images that

are effectively considered) due to the exclusion of many true positive matchings along

with the true negative matchings. This side effect is more relevant with the increase in320

the minimum number of shared nodes requested by the algorithm. This trend is clearly

confirmed in Table 1, which shows the percentage of true positive and true negative

matching images that have been excluded from analysis due to the retrieval criterion in

the four datasets that are used for the experiments (described in Section 5.1). Note that

the New College and City Centre Dataset contain images from different environments325

(such as gardens, archways, squares, alleys and inner urban areas), i.e., high ”intra

dataset” diversity. Thus, even a loose retrieval criterion is favourable in terms of a

priori excluded true negatives. Conversely, the Malaga parking 6L dataset contains

images that are more similar to each other. Thus, the positive effect, in terms of a priori

excluded true negatives, of not strict retrieval criteria is less evident. Finally, unlike the330

other datasets, the IDOL dum sunny3+dum cloudy1 dataset was collected in an indoor

environment and exhibits high sensitivity to the retrieval criterion. In particular, it is

observed that the negative effects of strict criteria in terms of a priori excluded true

14



Minimum Number

of Shared Nodes

New College City Centre
IDOL

dum sunny3+dum cloudy1
Malaga parking 6L

Excluded

TP

Excluded

TN

Excluded

TP

Excluded

TN

Excluded

TP

Excluded

TN

Excluded

TP

Excluded

TN

1 0.10% 44.50% 0.48% 8.53% 0.00% 0.18% 0.00% 0.14%

5 12.23% 72.50% 13.10% 92.36% 74.92% 93.14% 4.51% 22.55%

10 44.33% 94.37% 43.29% 98.71% 91.67% 99.10% 50.93% 95.53%

20 99.29% 99.96% 96.13% 99.97% 98.14% 99.85% 84.38% 99.95%

Table 1: Percentage of true positive (TP) and true negative (TN) matching images a priori excluded from

matching due to the retrieval criterion (Minimum Number of Shared Nodes) in the four tested public datasets.

A strict criterion causes the exclusion of many True Negatives, thus augmenting the precision, but it also

causes the exclusion of many True Positives, thus reducing appreciably the recall.

positives are visible also for less strict criteria that, conversely, do not severely affect

outdoor datasets.335

Finally, the choice of a reasonable minimum number of shared nodes is applica-

tion dependent: for example, for a localization and mapping task, precision is critical

and a strict retrieval criterion (e.g., minimum number of shared nodes equal to 10) is

advisable.

4.2. Unstructured Similarity Between Images340

In this section we analyse the block that computes the similarity between landmarks

to establish whether a candidate image from the image collection matches with the

current query image. This block is based on the algorithm proposed by Sunderhauf et

al. [6] and does not consider the covisibility information.

The similarity measure between the query and candidate images is derived as a

function of the landmarks’ feature vectors and of the shape parameters of their bound-

ing box. The algorithm computes a similarity score, Pij (via equation (3)), between

each landmark in the query image and the most similar landmark in the candidate im-

age under investigation. The matching score is then assigned to a candidate image as

the mean value of individual scores of its landmarks:

ŜQ,Cn
=

1

NP

∑

ij

Pij (5)

Note that, since the considered landmarks in this phase are those of the query and345

a candidate image, the similarity score between a pair of landmarks can be smaller
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than the threshold that has been fixed in Section 3.3 to map them in the same node

of the graph. This is reasonable because in this phase the similarity between images

is computed on the basis of landmarks appearance, without exploiting the covisibility

graph information.350

4.3. Subgraph Matching

The purpose of the Subgraph Matching block is to exploit the information embed-

ded in the covisibility graph in order to refine the previously computed matching score

ŜQ,Cn , which is based only on similarity between landmarks (Section 4.2). In par-

ticular, we exploit the graph Adjacency matrix to take into account the neighbouring355

information of the nodes in each image subgraph. The Adjacency matrix is obtained

on the basis of the graph clique matrix Mclique.

As the exploration proceeds, the covisibility graph grows, thus, except in the initial

phase, our system deals with a large clique matrix. In order to manage efficiently

the large dimensionality, we implement an ad-hoc procedure (see the pseudo code in:360

Algorithm 1) that exploits the definition of the Adjacency matrix for its calculation,

thus limiting significantly the computational cost needed to obtain it (i.e., O(N2), that

is further reduced to O(N) thanks to the sparsity of the clique matrix).

Note that during the graph construction the nodes maintain their order (that is the

order in which they have been allocated during the exploration as explained in Section

3.4), thus the row and column indices of the Adjacency matrix are the same for the

query and candidate images subgraphs. This implies that the subgraphs are aligned

[37], with the great advantage that they can be directly compared by means of their

Adjacency matrices. The similarity between the candidate and the query Adjacency

matrices is measured by means of the normalized cross correlation as follows:

γQ,Cn =

∑
ij A

Q
ij ·ACn

ij√∑
ij(A

Q
ij)

2 ·∑ij(A
Cn
ij )2

(6)

where in (6) AQ
ij and ACn

ij are the Adjacency matrix entries relative to landmarks pi

and pj in the subgraphs of query location Q and candidate location Cn respectively.365

Then we maintain only normalized cross-correlation values that are lower than a

defined fraction α (set at 0.1 in this study) of the normalized cross-correlation between
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Algorithm 1 Obtain Adjacency matrix

Input : Mclique

Output : A

A← 0N×N

for x← 1 to N do

. isolate Mclique columns having 1 in row index x

x columns←Mclique[x=1,:]

. set to 0 x columns element in row index x

x columns(x)← 0

. collect indices of node x’s neighbours

x neighbours← indexOf(x columns = 1)

A[x, x neighbours]← 1

end for

the query image and the previous one Ck−1, which is reasonably the most correlated

with the current query image, as:

γ̂Q,Cn =




γQ,Cn

if γQ,Cn
< α · γQ,Ck−1

1 if γQ,Cn ≥ α · γQ,Ck−1

(7)

Note that α can assume any value between 0 and 1. The choice of setting α = 0.1 is

guided by the consideration that a small value implies a small cross-correlation between

the Adjacency matrices of the query and candidate images. In fact, the obtained γ̂Q,Cn

value is used to weight the similarity score ŜQ,Cn
(5) of each candidate location, thus

filtering out matching scores of candidate location whose landmark arrangement is too370

different from that of the query location.

The resulting matching score between images is thus computed as follows:

SQ,Cn = γ̂Q,Cn · ŜQ,Cn (8)
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4.4. Virtual Locations

Each new acquired query image is compared to a subset of images from the Image

Collection which have been retrieved as described in Section 4.1. In this block each

candidate image is ”virtually” expanded using the visual information of neighbouring375

images.

This can be very useful in situations where viewpoint changes are critical. When

a place is revisited it is reasonable to assume that the viewpoint is different, this espe-

cially in proximity of 90◦ corners or in stretches traversed with lateral displacement.

In such a situation some detected landmarks can have a very different relative position,380

others can be occluded and some new ones can enter the current view. Thus, the place

recognition algorithm can benefit from the generation of virtual locations in order to

compensate viewpoint changes.

A possible strategy to build virtual locations is to temporarily add nodes (land-

marks) to the current candidate image under investigation. Previous works, such as385

[12], [13] and [14], obtained virtual locations by ”merging” subgraphs of candidate

images that share a user-defined number of nodes. In this work, we remove this param-

eter and propose a strategy based on the spectral properties of the covisibility graph. In

particular, the nodes to be added to the current candidate image are selected following

an agglomerative clustering approach [38]. The agglomerative clustering algorithms390

start from a seed subgraph and iteratively include nodes among its neighbours (i.e.,

nodes that are connected at least to one node that already belongs to the seed). In this

respect, the subgraph of the current candidate image is used as seed and its neighbour-

hood contains nodes belonging to other candidate images. Our node selection criterion

is based on the graph connectivity metrics, which is computed exploiting the algebraic395

graph theory as explained below.

Considering the Adjacency matrix A of the graph, its Degree matrix D can be

immediately derived. This is a diagonal matrix with as many rows and columns as

the number of nodes and, for an undirected graph (such as our covisibility graph) D

contains the number of each node’s neighbours in the corresponding diagonal positions,
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that is:

Dij =
N∑

j=1

Aij (9)

where N is the total number of nodes in the graph.

On the basis of the Adjacency matrix and of the Degree matrix it is possible to

compute the Laplacian matrix L of the graph as:

L = D −A (10)

By construction L is singular, symmetric and positive semidefinite in case of a undi-

rected graph. Eigen-decomposition of the Laplacian matrix induces a clustering of the

nodes of the graph (in particular it makes it possible to identify a specific number of400

groups of nodes depending on the eigenvector we select for clustering purpose).

The N ordered eigenvalues of L are defined as λ1 ≤ λ2 ≤ ... ≤ λN . The sum of

each row and column of L is zero, thus, by construction, the eigenvalue λ1 is equal to

zero and its associated eigenvector is u1 = 1, in fact Lu1 = 0.

In this study we exploit the second eigenvector, u2, associated to eigenvalue λ2 , since405

it provides a measure of the graph connectivity as explained in [39], [40]. For instance,

Figure 7 shows the components of the eigenvector u2 mapped on the nodes of a sample

covisibilty graph computed on the first 20 images of the City Centre Dataset. It may be

observed that the components of u2 vary smoothly from the smallest ones (in blue) to

the largest ones (in red), thus inducing a natural ranking of the nodes of the graph.410

Based on the previous considerations, each candidate image can be expanded by

adding nodes, one by one, as a function of similarity measure provided by the u2

component value. This strategy reflects the fact that the node to be added is the most

connected to those actually contained in the candidate image subgraph.

After the addition of a node to the candidate seed subgraph, the matching score of415

the expanded candidate location is recalculated. The expansion process is stopped if

the similarity measure between query and candidate images decreases. The process is

also stopped if a predefined maximum number of nodes is added to the seed location

(we set this limit to 50% of the number of Edge Boxes extracted, which is equals to

25 in this work). The role of this additional stopping criterion is twofold. First, it420
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limits the time complexity of the virtual location construction procedure and second, it

prevents false positive matches. In fact, if the expansion were uncontrolled, a candidate

image would likely obtain a high matching score because of the addition of many

nodes not belonging to its original subgraph, thus the matching score might prove

misleading. The pseudo-code of the virtual location construction process is reported in425

the Algorithm 2 table.

To have an idea of the positions where the virtual locations are actually generated

along the paths, in Figure 8 we report the 2D GPS trajectories for the four test datasets

datasets where the red dots represent the GPS coordinates of the candidate images

that were used as seeds for virtual locations. It can be observed that virtual locations430

are created near curves, 90◦ angles and stretches traversed in opposite directions or

in cases of significant lateral displacement. Those points are particularly critical in

terms of viewpoint changes, since even small variations in the trajectory (and thus, in

the viewpoint) may cause a very different arrangement of the visible landmarks in the

acquired scene, thus making the loop closure detection particularly challenging.435

4.4.1. Computational Complexity

The computational complexity of the procedure for computing a virtual location is

quadratic in the number of nodes of the graph, i.e., O(N2), in the worst case. In the

average case the complexity is linear in the number of nodes i.e., O(N). In fact, the440

actual number of allocated nodes is much less than the product between the number

of stored images and the fixed number of patches extracted in each query image i.e.,

NP (see Section 3.4). In addition, the number of candidate images is much less than

the number of the database images thanks to the selection carried out by the retrieval

criterion (see Section 4.1).445

The construction of a virtual location is performed for each one of the retrieved

candidate images, which is equal to the number of database images in the worst case.

The most time consuming part of the virtual location construction algorithm is mainly

due to the eigenvector decomposition procedure used to compute the u2 vector. This

procedure is cubic in the number of nodes in the graph, i.e., O(N3) but it is performed450
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only once for all retrieved candidate images.

A possible strategy to limit the computational load is to use odometry information

to ”activate” the construction of virtual locations only in particular situations, such as

during turns, where they proved to be particularly useful.

5. Experiments and Results455

In this section we describe the experimental setup and the public datasets selected

for testing. In previous works [6, 14], the superiority of semi-semantic feature based

methods over low-level feature based methods has been clearly shown. For this reason,

in this study the analysis is carried out with the purpose of highlighting the importance

and the role of the different blocks of the overall algorithm based on semi-semantic460

features, and to perform a deep experimental evaluation of the performance in different

operative scenarios.

5.1. Tuning and validation Datasets

The parameters of the proposed algorithm were tuned on the Gardens Point day-

left and day-right dataset used, for example, in [6]. To achieve a fair comparison, this465

dataset was not used for testing. This dataset presents both indoor and outdoor sections,

repeating patterns along the path, dynamic objects such as pedestrians, many corners

and curves along the trajectory, illumination condition variations such as shadows and

sunlight and a typical scenario of viewpoint variation such as lateral displacement.

The main purpose of the tuning phase is the setting of the threshold value defining470

the minimum similarity score between landmarks in order to map them in a unique

node (see Section 3.3). This threshold is set to 0.3 in our implementation. In light of

the considerations made in Section 3.3, the selected value for the threshold value was

deemed to provide a reasonable trade-off between speed and accuracy.

The performance evaluation was carried out using the following four public datasets.475

City Centre Dataset. This dataset [3] consists of left and right view images collected

”roughly” with a spatial frequency of 1.5m by a Segway robot along a 2km path in a
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urban environment. Right and left images are acquired at the same time, thus we con-

catenated each pair and considered the new ”panoramic” images in our experiments.

This dataset is characterized by the presence of dynamic objects such as pedestrians480

and vehicles, mild illumination variation mainly due to shadows and sunlight and mild

viewpoint variation due to lateral displacement while traversing the same path.

New College Dataset. This dataset [3] consists of left and right images collected with

a spatial frequency of 1.5m by a Segway robot along a 1.9km path in a university

campus. Since independent right and left images are acquired also in this case, we con-485

catenated each pair and considered the new ”panoramic” images in our experiments.

The trajectory is articulated and presents many loops and straight segments traversed

also in opposite directions. Also this dataset contains many dynamic elements, such as

pedestrians, and repeated elements, since it was acquired in an area characterized by

similar walls, archways and bushes.490

Malaga Parking 6L Dataset. This dataset [41] was acquired in a university parking

area using an electric car equipped with two Firewire colour cameras. For our experi-

ments we considered the rectified images of the left camera. The sequence of images

was subsampled at sampling rate 3, thus retaining a third of the entire number of images

in the sequence. The explored area covers about 17920m2 and images used here are495

taken every 0.4s. The environment of this dataset presents moving vehicles and pedes-

trians and significant sunlight variations. The trajectory presents many loops, stretches

traversed in opposite directions and many intersections, thus viewpoint changes are

particularly severe in this dataset.

IDOL dum sunny3 + dum cloudy1 Dataset. This dataset [9] was acquired in a re-500

search laboratory consisting of five rooms, in different seasons, hours of the day and

weather conditions, by a PowerBot robot equipped with a monocular camera whose

height above the floor is 36cm. In order to have significant illumination variation, we

concatenated two sequences one taken on a sunny summer day and the other n a cloudy

winter day. The two sequences have been concatenated after subsampling them at sam-505

pling rate 3, thus retaining a third of the entire number of images in each sequence. The
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Dataset Radius [m] Min. indices difference

City Centre 10 40

New College 10 40

Malaga Parking 6L 2 135

IDOL dum sunny3 + dum cloudy1 1.5 300

Table 2: Radius and minimum difference between indices used for ground truth construction for each test

dataset

same trajectory is traversed twice, with mild differences that however produce critical

viewpoint changes in an indoor environment.

5.1.1. Ground truth

Although some of the above public datasets provide image matching information,510

it was decided to recompute the image matching matrix in order to use a consistent

criterion for all the considered datasets.

The ground truth was computed on the basis of the GPS coordinates of the images.

Namely, we considered two images to be matching if they were acquired within a small

distance radius. Further, to avoid ”trivial matchings” between consecutive images, a515

minimum difference between the index value of the matching images was also defined.

In fact, it is obvious that the most similar images to the current query image are the ones

acquired immediately before, but this similarity should be disregarded in the procedure

for loop closure detection.

The IDOL dum sunny3 + dum cloudy1 dataset is the only indoor dataset that was520

used in our experiments. Due to the significant viewpoint variation caused by even

small trajectory variations, for this indoor dataset we decided to match images of the

first traversal with those of the second traversal. Thus, we imposed a minimum differ-

ence between matching images equal to 300, so that only images belonging to different

traversals are considered.525

Table 2 reports the parameters that were used for the computation of the ground

truth for each dataset.
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5.2. Plan for the Experiments

In order to evaluate the performance of the different blocks of the proposed algo-

rithm and to compare the overall performance with those of a state-of-the-art method530

we considered the following scenarios:

• A state-of-the-art technique that is based on the high level features extracted by

Edge Boxes and AlexNet conv3, that are also used in our work, but does not use

any graph based representation of the environment (named ’HOCE’ - Heap Of

CNN Extracted features - in this work). This is essentially the approach proposed535

by Sunderhauf et al. in [6]. This algorithm was here re-implemented and used

in an incremental fashion to be consistent with our approach.

• Our complete approach (named ’GOCCE’ - Graph Of Covisible CNN Extracted

features), that exploits the covisibility graph as described in Section 4.

• A simplified version of the approach (named ’GOCCER’) that uses only the cov-540

isibility graph for the retrieval of matching candidates, selected in case they share

at least 10 nodes with the current query image (in the following this criterion will

also be referred to as ’strict retrieval’).

• Another simplified version of our approach (named ’GOCCERS’) that uses the

covisibility graph for matching candidates retrieval, selected if they share at least545

a node with the current query image, and for refining the matching score of

candidate locations via subgraph comparison.

As for the settings, we used for each scenario the same values for the maximum num-

ber of patches extracted in each image and for the minimum similarity score between

landmarks in order to be included in the same node.550

5.3. Performance analysis

In a localization and mapping application, the loop closure detection module is es-

sential since it allows an autonomous agent to self-relocalize and to adjust the map of

the environment. This section reports the results of a detailed study that is mainly fo-

cussed toward the evaluation of the loop closure detection performance of the proposed555
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method. Considering a generic loop closing problem, it is generally more important to

avoid wrong matchings along the trajectory, rather than not to miss a matching, i.e.,

precision is usually a more critical requirement then recall.

To have a synthetic comparison of the performance provided by the considered

variants of our method, in Figure 9 the precision-recall curves obtained on the four560

test datasets are reported, while Table 3 shows the precision and recall values obtained

at maximum recall and precision respectively. It is observed that in the case of strict

retrieval (i.e., for GOCCER) the precision is higher in every dataset (note in particular

the performance for the City Centre dataset in Figure 9a and for the Malaga Parking 6L

dataset in Figure 9c). This is mainly due to the fact that the strict retrieval criterion ex-565

cludes a priori many true negative matchings, thus the precision is higher (see Section

4.1). The main drawback of this approach is that 100% recall is never reached. This is

because true positive matchings with lower matching scores (that are considered by the

other analysed methods) are a priori excluded by GOCCER. An important difference

between the graph-free approach (i.e., HOCE) and the graph-based approaches with570

unselective retrieval criterion (i.e., GOCCERS and GOCCE) was also observed. In fact,

especially on the City Centre Dataset the precision obtained by HOCE at high recall

is almost 10% inferior to the precision achieved by GOCCERS and GOCCE. This fact

confirms clearly the beneficial role of the subgraph matching score (Eq. 7) as addi-

tional information to refine the overall matching score between images. Performance575

obtained by HOCE in the remaining datasets was comparable (just slightly inferior) to

that of GOCCERS and GOCCE.

To evaluate the performance of the loop closing module it is also important to eval-

uate the metric error produced by wrong matches. Indeed, in order to build a consistent

map of the environment, a wrong loop closure detection can be considered somewhat580

useful if the metric error is small. In fact, it is reasonable that images having a simi-

lar visual content are acquired at close distance each other, thus the localization error

produced by their matching can be considered acceptable for a coarse localization. In

other words, errors of a few meters can still allow a reliable localization producing

a consistent map of the environment. The results of the metric study are reported in585

Figure 10, which shows the average metric error, i.e., the average Euclidean distance
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City Centre New College Malaga parking 6L
IDOL

dum sunny3+dum cloudy1

recall

at 100%

precision

precision

at max

recall

recall

at 100%

precision

precision

at max

recall

recall

at 100%

precision

precision

at max

recall

recall

at 100%

precision

precision

at max

recall

HOCE 15.64% 45.18% 10.09% 41.40% 08.17% 00.56% 03.44% 68.73%

GOCCER 15.64%
90.89%

at 91.74%
10.30%

63.44%

at 90.31%
18.27%

15.12%

at 62.50%
03.13%

12.09%

at 68.52%

GOCCERS 16.18% 45.85% 07.30% 43.21% 08.17% 00.56% 03.44% 68.73%

GOCCE 16.00% 45.68% 10.30% 43.53% 08.17% 00.56% 03.44% 68.73%

Table 3: Precision and recall values at maximum recall and precision respectively comparing the different

techniques on the four considered datasets

between coordinates of false positive matching images, as a function of the threshold

value applied to the matching score for assessing a loop closure. Analysing Figure 10

it can be observed that a low threshold leads mainly to spatially distant false positive

matches, while large threshold values do not produce false positive matches (this im-590

plies a high precision). Some differences among the methods were highlighted by this

metrical study: the higher precision of the GOCCER approach is confirmed also in met-

ric terms, while the method of Sunderhauf et al. in [6] (HOCE) produces less precise

results compared to the methods exploiting the covisibility graph, especially in metric

terms.595

Finally, to evaluate the role of the virtual locations, we carried out an additional

study considering only candidate images that served as seed for the construction of a

virtual location (shown in Figure 8). In other words, we considered only those matches

between a query image and candidate images that included nodes from other images,

i.e., were used as seeds for a virtual location. Precision-recall curves obtained con-600

sidering only this subset of images are reported in Figure 11. It may be observed

that, especially in the Malaga Parking 6L dataset (Figure 11c) our complete approach,

GOCCE, obtains good performances thanks to the virtual locations construction func-

tion (note the difference with respect to the GOCCERS approach that does not calculate

virtual locations). The Malaga Parking 6L dataset exhibits an articulated trajectory,605

with many curves, intersections and stretches traversed in opposite directions. In these
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critical scenarios a localization and mapping system can benefit from the virtual loca-

tion construction in terms of loop closure detection performance.

In light of this, we use the Malaga Parking 6L dataset for an additional study to

evaluate the benefits of the virtual locations in terms of loop closure detection perfor-610

mance. In particular, we consider the GPS position where virtual locations have been

constructed, these are shown with dots in Figure 12. For each one of the four methods

under investigation, the threshold on the matching score is set at a value that guaran-

tees at least 85% of precision and 20% of recall. With these settings, the output of

the loop closure detection methods is evaluated. In Figure 12, GPS positions of virtual615

locations are marked with coloured dots along the paths. In particular, black dots are

used in the case of a correct output (i.e., true positives or true negatives), green dots

in the case of a false negative output and red dots in the case of a false positive out-

put. It can be observed that GOCCE produces the smallest number of false positive

matches: 4 FP against 6 FP for GOCCER, 7 FP for GOCCERS and 27 FP for HOCE.620

These results highlight the fact that virtual locations are useful in scenarios that are

particularly challenging in terms of viewpoint changes, such as curves and oppositely

traversed stretches. Exploiting virtual locations in these cases makes the loop closure

detection system more precise.

6. Conclusion625

In this work, we proposed an appearance and viewpoint invariant place recognition

system. The method relies only on machine vision images and does not need any

specific training when operating in new unexplored environments.

These characteristics are achieved by modelling inter object geometric relations in

the environment by means of a covisibility graph, whose nodes are high level, semi-630

semantic landmarks. These landmarks are image patches containing generic objects

and are described by means of features extracted by an inner convolutional layer of a

pre-trained CNN, that are particularly robust to appearance changes.

We proposed novel specific algorithms that leverage the covisibility graph repre-

sentation for a fast and robust retrieval of the most likely matching candidate images.635
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The covisibility graph is also exploited for refining images matching score based on the

co-presence of landmark contained in the images. We also proposed a novel strategy

for synthesising virtual locations via a parameter-free approach that is based on a local

graph clustering method which exploits covisibility graph connectivity information.

Experimental validation carried out on four public datasets has shown that, with640

regard to precision and recall, our approach provides performance that is comparable

(or superior) with respect to a state-of-the-art place recognition technique that does not

rely on any graph representation of the environment.

In addition, the construction of virtual locations is useful in specific but critical

situations such as turning near 90◦ corners or traversing a stretch in opposite directions.645

In these scenarios, virtual locations construction provides an improvement in terms of

precision of the loop closure detection system.

Considering metric error (i.e., the metric distance between mismatched images co-

ordinates), our graph-based technique outperformed a state-of-the-art graph-free ap-

proach that was considered as benchmark.650

A possible extension of this work would be the implementation of a strategy that

compares sequences of images, rather than single images. This directly translates in

the comparison of bigger subgraphs.
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loop closure detection on panoramas for visual navigation, in: Intelligent Vehicles

Symposium Proceedings, 2014 IEEE, IEEE, 2014, pp. 1378–1383.

[27] A. L. Majdik, D. Verda, Y. Albers-Schoenberg, D. Scaramuzza, Air-ground735

matching: Appearance-based gps-denied urban localization of micro aerial ve-

hicles, Journal of Field Robotics 32 (7) (2015) 1015–1039.
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Figure 2: Schematic representation of the visual information processing blocks used during the exploration.

When a new image is acquired, the Edge Boxes algorithm (dark red block) extracts a pre-defined number

of image patches. These are fed to AlexNet (yellow block), from which the output of conv3 layer is re-

tained. The dimensionality of this output vector is reduced via Gaussian Random Projection (cyan block).

Information about each patch enriches the incremental database of images (magenta block) and extends the

covisibility graph by mapping landmarks in existing or new nodes (green block).
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(a)

(b)

(c)

Figure 3: Incremental covisibility graph construction during the environment exploration. Examples of Edge

Boxes landmarks extracted from images at time k − 1 (left) and at time k (right) respectively are shown in

(3a). Relative landmark covisibility subgraphs of images visible at time k − 1 (left) and at time k (right)

respectively are shown in (3b): landmarks acquired in the same image are connected in a dense graph.

Landmark covisibility whole graph at time k − 1 (left) and at time k (right) respectively are shown in (3c):

similar landmarks are mapped in the same node, while different landmarks produces new nodes.
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Figure 4: Landmarks belonging to some sample nodes: different nodes can contain scaled versions of the

same landmark (e.g., nodes A, B and C), the same node can contain a small number of different outlier

patches (e.g., nodes F and J) and in the same node there can also be clusters of patches, smoothly similar

each other.
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Figure 5: Trajectory and Clique matrix Mclique relative to the City Centre Dataset. This dataset presents a

circular trajectory traversed two times starting form image 152 to image 674 and from image 675 to image

1220 and its clique matrix presents a repeating nodes pattern in the corresponding image indices, along

with few new nodes that are specific of the second traversal. The allocation rate of new nodes is inferior in

the second traversal with respect to the first traversal because the robot sees many landmarks belonging to

already allocated nodes and only a small number of new nodes is allocated.
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Figure 6: Schematic representation of the proposed Place Recognition system. The covisibility graph is

exploited to retrieve the most relevant candidate images (orange block). For each one of the retrieved images,

it is calculated the landmarks similarity score (light green block) and the subgraph matching score (red

block). Those values are multiplied and used as baseline score in the process of virtual location construction

(blue block). Using this latter block the final similarity score for each candidate image is assessed.
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Figure 7: Eigenvector u2 components associated to each node a subgraph of the City Centre Dataset, made

of the first 20 images: note the inducted partition in two subsets.

(a) (b)

(c) (d)

Figure 8: GPS positions of candidate images (red dots) that are used as seed for the construction of a virtual

location on the four tested datasets, namely the City Centre dataset (8a), the New College dataset (8b), the

Malaga Parking 6L dataset (8c) and the IDOL dum sunny3 + dum cloudy1 dataset (8d). Virtual locations are

created near curves, 90◦ angles and stretches traversed in opposite directions or in cases of a severe lateral

displacement.
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Algorithm 2 Obtain Virtual Location

Input : u2, Mclique, SQ,Cn

Output : S∗Q,Cn
, MC+

n

clique . C+
n
.
= expanded candidate

S∗Q,Cn
← SQ,Cn

M
C+

n

clique ←Mclique[:, Cn]

M
Ĉ+

n

clique ←Mclique[:, Cn]

. Ĉ+
n
.
= temporary expanded candidate

added← 0

while added <
NP

2
do . NP = 50 in this study

. collect indices of nodes in seed subgraph

seed← indexOf(M
C+

n

clique = 1)

. collect indices of nodes not in seed subgraph

N (seed)← indexOf(M
C+

n

clique = 0)

. N (seed)
.
= seed neighbourhood

. find the index of the best node to add to seed subgraph

best neighbour ← argmin
j∈N (seed)

{ ∑
i∈seed

(u2[i]− u2[j])
2

}

. add best neighbour to the current seed subgraph

M
Ĉ+

n

clique[best neighbour]← 1

calculate SQ,Ĉ+
n

if S∗Q,Cn
≥ SQ,Ĉ+

n
then

break

else

M
C+

n

clique ←M
Ĉ+

n

clique

S∗Q,Cn
← SQ,Ĉ+

n

added+ 1

end if

end while

41



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

 

 

HOCE

GOCCE
R

GOCCE
RS

GOCCE

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

 

 

HOCE

GOCCE
R

GOCCE
RS

GOCCE

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

 

 

HOCE

GOCCE
R

GOCCE
RS

GOCCE

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Recall

P
re

c
is

io
n

 

 

HOCE

GOCCE
R

GOCCE
RS

GOCCE

(d)

Figure 9: Precision-recall curves comparing the different techniques with our novel approach on the four test

datasets, namely. the City Centre dataset 9a, the New College dataset 9b, the Malaga Parking 6L dataset 9c

and the IDOL dum sunny3 + dum cloudy1 dataset 9d.
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Figure 10: Average metric error curves, relative to false positive matching errors comparing the different

techniques on the four considered datasets, namely the City Centre dataset (10a), the New College dataset

(10b), the Malaga Parking 6L dataset (10c) and the IDOL dum sunny3 + dum cloudy1 dataset (10d).
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Figure 11: Precision-recall curves comparing the different techniques with respect to our novel approach

considering only candidate images that were used as seed for the construction of a virtual location on the

four tested datasets, namely the City Centre dataset 11a, the New College dataset 11b, the Malaga Parking

6L dataset 11c and the IDOL dum sunny3 + dum cloudy1 dataset 11d.
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(a) (b)

(c) (d)

Figure 12: GPS position of candidate images that produced a loop closure detection error on the Malaga

Parking 6L dataset for the four considered methods: HOCE (12a), GOCCER (12b), GOCCERS (12c) and

GOCCE (12d). Black dots represent GPS positions of correctly matched images, green dots are GPS posi-

tions of false negative matching images and red dots are GPS positions of false positive matching images.

Note that GOCCE has the smallest number of false positive matches.
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Highlights 
 

● A training-free appearance and viewpoint robust Place Recognition system is          
proposed 

● The method uses CNN features and preserves scene structure via a covisibility            
graph 

● A novel approach for synthesising virtual views of the environment is proposed 
● Virtual views are particularly useful to face critical situations of viewpoint change 

 
 


