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Abstract

Collaboration is essential for effective performance by groups of robots in dis-
aster response settings. Here we are particularly interested in heterogeneous
robots that collaborate in complex scenarios with incomplete, dynamically
changing information. In detail, we consider an automated victim search
setting, where unmanned aerial vehicles (UAVs) with different capabilities
work together to scan for mobile phones and find and provide information
about possible victims near these phone locations. The state of the art for
such collaboration is robot control based on independent planning for robots
with different tasks and typically incorporates uncertainty with only a limited
scope. In contrast, in this paper, we take into account complex relations be-
tween robots with different tasks. As a result, we create a joint, full-horizon
plan for the whole robot team by optimising over the uncertainty of future
information gain using an online planner with hindsight optimisation. This
joint plan is also used for further optimisation of individual UAV paths based
on the long-term plans of all robots. We evaluate our planner’s performance
in a realistic simulation environment based on a real disaster and find that
our approach finds victims 25% faster compared to current state-of-the-art
approaches.
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1. Introduction

In recent years, professional first responders have started to use novel tech-
nologies at the scene of disasters in order to save more lives. Increasingly,
they use robots to search disaster sites [1, 2, 3, 4] and mobile phones are used
for both localising and communicating with casualties [5, 6, 7].

One of the most widely and successfully used robot platforms in the dis-
aster response domain are unmanned aerial vehicles (UAVs) [2, 4, 7]. UAVs
allow remote inspection and mapping. They are able to provide high resolu-
tion imagery and often need minimal infrastructure to fly. To speed up the
information gathering process, multiple UAVs can be airborne at the same
time. This increases the area that can be observed in a given amount of
time, but requires coordination to ensure the resources are deployed effec-
tively. Currently, however, such deployments use labour intensive, individu-
ally teleoperated UAVs. Given this, there is a drive toward using multiple
robots operating with a certain level of autonomy, in order to decrease the
operators’ workload. One approach for utilising multiple robots in this way
is semi-autonomous operation supervised by a small number of professionals;
only requiring human experts for crucial decisions [8]. Current commercial
UAV platforms also allow the deployment of a diverse group of robots, al-
lowing them to combine their individual capabilities to be more efficient [9].
For example, fixed-wing UAVs are capable of flying faster and carrying larger
payloads, but when they do so, they should be deployed with higher safety
measures (safety pilots are required for non-lightweight aircraft). On the
other hand, small rotary-wing UAVs are more agile and can approach and
provide imagery about objects on the ground.

Against this background, we consider an automated victim search sce-
nario in a disaster area with semi-autonomous UAVs using the mobile phones
of casualties to detect their presence. Some systems rely on the global po-
sitioning capabilities of the mobile phones or assume an operational mobile
network after the disaster1. We do neither. We assume that we have fixed-
wing UAVs that are capable of carrying equipment for locating mobile phones
and setting up temporary communication with them [10, 11] (mobile phone
scanning). In addition, we also have small rotary-wing UAVs that can be
easily teleoperated by professionals to inspect the surroundings of a mobile

1A large-scale disaster often destroys local infrastructure or at least overloads it causing
unreliable operation.
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phone to find detailed information about the state of a possible victim (victim
search). This provides an opportunity to utilise the advantages of different
UAV platforms in a collaborative setting. Of course, the problem complexity
increases when collaborating with different robots. It is not different in this
setting. Locating mobile phones and inspecting their surroundings involves
an underlying dependency between these actions; a specific mobile phone
needs to be located before its surrounding can be inspected.

To date, research on collaboration between multiple robots has typically
focused on known settings, where the possible robot actions are defined as
a set of tasks [12, 13, 14]. However, in most real-world settings, there is a
significant amount of uncertainty present. For example, information about a
disaster site develops gradually during disaster relief. Thus initially there is
often very little certainty about the locations of people requiring assistance
(e.g. damaged buildings, trapped victims, or supply shortages). Existing so-
lutions that tackle collaboration in the face of uncertain information are typ-
ically limited to simple exploration or target search problems [15, 16, 17, 18].
Moreover, the use of generic temporal planners rapidly becomes intractable
for such problems [19] unless applied in a domain-specific manner [15]. Fi-
nally, domain specific approaches rarely involve complex action relations,
such as task dependencies where the actions of some robots are built on the
actions of others. When they do so, decomposition techniques are applied to
decrease the problem complexity [20, 21] or simple heuristics are applied to
enhance similar collaboration [22]. Such approaches often lead to low qual-
ity solutions, because vital action dependencies across different roles are not
taken into account during the optimisation.

Particularly in our scenario, the collaboration between the mobile phone
scanning and victim search robots is vital when operating at the same time.
When using decomposition planning, victim search robots cannot build on
the plans of mobile phone scanning to identify valuable actions, and simi-
larly, mobile phone scanning robots cannot prioritise their search according
to the planned actions of the victim search robots. The main challenge is that
the problem of multi-robot exploration (mobile phone scan) and multi-robot
task allocation (victim search) are both complex optimisation problems [23];
especially when combined within an uncertain domain. For this reason joint
planning2 for multiple robots involving action dependencies in an uncertain

2Combined planning for both partial planning problems that optimises the plan of the
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setting has not been achieved. When researchers tackle a similarly complex
planning problem, often the planning horizon is limited to a number of ac-
tions in order to decrease the complexity. Unfortunately in this setting, the
collaboration has a strong spatial bound (victims are located near mobile
phone locations) and less strict temporal constraints (a victim search can
start anytime after a mobile phone is detected). Subsequently, some actions
may have an effect on other actions that are performed much later. Therefore
full-horizon planning is necessary to fully capture the collaboration between
the robots.

Given this context, and building on our preliminary work in [24], we offer
a novel online planning approach for heterogeneous multi-robot collaboration
under uncertainty that provides the benefits of joint, full-horizon planning.
Uncertain information is incorporated in our planning process using hindsight
optimisation (HOP) [25] that allows us to apply computationally efficient de-
terministic planning techniques for uncertain optimisation. To create a joint
plan for different robots, the individual plans of homogeneous robot groups
are optimised, with regards to the plans of the other groups as constraints,
in an iterative process. In particular, we propagate the effects of the tem-
poral constraints over the stochastic action domain between the plans of the
different robot groups. As a result, we can generate plans for robots assigned
to victim search even before the final locations of the mobile phones are con-
firmed. Similarly, we can generate plans for robots assigned to scanning for
mobile phones, taking account of the current uncertain plans of victim search
robots that will be tasked with searching victims near mobile phones. We
evaluate the performance in a realistic physical simulation of mobile phone
signals and UAV flight trajectories3 in a disaster response setting set after
the Haiti earthquake in 2010. Our results show that joint planning allows
us to find victims faster compared to state-of-the-art approaches that use
decomposition planning. Additionally, we successfully exploit the knowledge
about the complete plans of the robot team by applying further optimisation
in the mobile phone scanning using short-term path planning. In so doing,
we make the following contributions to the state of the art:

entire robot group.
3The mobile phone signals are simulated using a log distance path loss model with

added noise, UAV flight trajectories are simulated using 2D acceleration (rotary-wing) or
angular speed limited model (fixed-wing) controlled by a simple simulated autopilot.

4



• We are the first to propose a method for multi-robot task allocation
(MRTA) given an arbitrary task distribution and continuous action
space (UMRTA problem, see Section 3.2). In detail, we use HOP to
assign a task or a motion direction for each robot using a standard
MRTA scheduler.

• We offer the first online planning approach to create a joint plan under
uncertainty for distinct groups of robots in a complex collaborative
setting (described above). As a result, victim search plans are made
over an uncertain set of victim locations and iteratively optimised along
with mobile phone scanning plans.

• In the current setting, we exemplify the value of robots being aware of
the full-horizon plan of all other robots by applying further optimisation
in the flight path of the scanning robots using Monte Carlo tree search
(MCTS). We do this by showing that the same optimisation is not
beneficial when applied using heuristics instead of the robot plans.

• We evaluate the performance of the joint planning approach against the
state-of-the-art decomposition planning approach in a realistic simula-
tion setting detailed in Section 7. In particular, we use realistic UAV
flight path simulation, model mobile phone locations using particle fil-
tering, while running robust, decentralised computation on the UAVs
using message passing. The details of the message passing are dis-
cussed and communication requirements are determined for a physical
deployment.

In the following we discuss the background of this paper (Section 2). This
is followed by the problem definition (Section 3). After that in Section 4, we
detail the long-term planning approaches used in the evaluation. In Section 5,
the additional short-term path planning optimisation is detailed. Section 6
details the communication between robots. The following two sections detail
the experiments (Section 7) and evaluate the results gained from the experi-
ments (Section 8). Finally, we conclude the paper and provide directions for
future work in Section 9.

2. Background

In this section, first the related literature is discussed, then relevant algo-
rithms are described about task allocation and scheduling, optimisation un-
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der uncertainty and tree-search based optimisation techniques.

2.1. Related work

There are two main methodologies for utilising mobile robots (or autonomous
vehicles) that are relevant to our setting. The first is task allocation, where
the problem is allocating a set of robots to accomplish tasks, and it is well
defined in the literature as the multi-robot task allocation (MRTA) problem
[23]. Specifically, when coordinating mobile robots, tasks typically consist of
going to a specific location and performing an operation in its proximity. This
problem can be solved using centralised or decentralised approaches [23, 14],
but relies on a known set of tasks (more details in Section 2.2 and Section 3).
The second main methodology is searching an area, where the problem is
defining specific paths for the robots in the area to decrease uncertainty by
making observations. In these settings, an importance or intensity map con-
tains the current state of the search and the knowledge about the area. This
map also incorporates the amount of uncertainty in the current information,
therefore optimisation under uncertainty can be applied (see Section 2.3).
The robots travel on this map and update the intensity values according to
their observations. A simple and robust way to guide the robots is to ap-
ply gradient descent on this map [26, 18]. Also several biologically inspired
methods exist [27, 28, 29], and some use potential field based approaches in
unstructured environments [30] that is beneficial when unexpected obstacles
appear, but requires the tuning of several parameters to adopt to different
settings. When the motion capabilities are limited as for fixed-wing UAVs,
performing a tree search within the feasible paths can be used to control the
vehicles [17, 31, 32] (detailed in Section 2.4). Unfortunately, to use such tech-
niques for long-term online planning, the action space has to be significantly
reduced by either discretising the problem [16] or limiting the action space
to a set of predefined search patterns [15]. When discretising the search
problem, it is often defined as a coverage problem that shows some simi-
larity to the task allocation formulation. In coverage problems, the search
problem is divided into neighbouring cells that have to be covered by the
robots. The robot actions are defined as traversing between neighbouring
cells to cover cells. This approach can be beneficial when the traversability
of the area is non-trivial (e.g. no-fly zones, obstacles or walls divide regions
in the search area). However when using UAVs to fly autonomously above a
disaster site, the flight height can be chosen to be high enough to fly above
any possible obstacle if the sensing capabilities allow it to do so (as in the
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setting described in this paper). In such cases, the same can be achieved
using task allocation where each cell represents a task. Several papers show
the capabilities of partially observable Markov decision processes (POMDP)
to solve the coverage problem, but a correctly chosen greedy algorithm often
performs very similarly to the computationally heavy POMDP approach in
realistic problem settings [18, 33].

As discussed in Section 1, a full-horizon plan is necessary to capture the
collaboration in a similar scenario. From the planning approaches mentioned
earlier, full-horizon plans can be created using MRTA (in case of the time-
extended assignment variation) [23] or temporal planning [16, 15]. However,
because of the computational overhead of temporal planners, UAV search
is impossible to compute in an online fashion for reasonable sized problems
(10×10 grid, > 2 UAVs) as shown in [19]. For this reason, we approach the
mobile phone scan problem as a MRTA problem with tasks on a grid.

An efficient tool to create full-horizon plans for problems containing un-
certainty is determinisation. This method is detailed in Section 2.3. In this
work, we use hindsight optimisation (HOP) for planning under uncertainty,
that has been successfully applied in a multi-UAV context in [16].

When multiple groups of robots collaborate at the disaster site, the col-
laboration of groups becomes important in addition to the task allocation for
the individual groups. Some approaches investigate multiple task types and
their relations and creates an allocation for the whole group. For example,
the relations between tasks can be represented as a task tree and subtrees are
allocated to individual robots [13]. However, this assumes that the robots
are capable of performing all tasks within a subtree and this is not the case
when the different robot platforms are specific for a certain type of task.
When using aerial robots, the amount of instrumentation on a platform is
very limited, so distinct groups of robots performing tasks at different levels
is more likely, as exemplified by [34]. In such settings, the most common
approach of collaboration is independent action planning. In this vein, [35]
performs a search and rescue mission using multiple UAVs, but search and
rescue are separated in time. There are examples of robots with different
capabilities operating at the same time in a search and surveillance setting
[20, 21]. However, the planning for the different robot platforms is separate,
only the outcome of their actions are shared between all robots. Some ex-
amples exist for collaborative planning with different robots. In particular,
[22] uses the probabilistic plans of a ground robot to find areas to scout with
a UAV and in [36] the allocations of different tasks are planned sequentially
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to allocate robots for a complex mission. These approaches allow different
robots to plan according to the intentions of the collaborating robots, but
does not adjust the plans of these collaborating robots.

In contrast, we provide a planner that adjusts the plans of all collabo-
rating robots in order to optimise their behaviour. This creates a joint plan
for all robots, that is able to capture action dependencies as discussed in
Section 1.

2.2. Task-allocation and scheduling

The MRTA problem in our setting can be defined as a tardiness scheduling
problem with common due date. Rescue tasks are time-critical, each needs
to be completed as soon as possible, the common due date can be defined
as t = 0. This means the utility of each task decreases over time, as later
defined in Equation 1. Moreover, there are sequence dependent setup times
for each task, that is, the time spent by a robot to travel to the specific
task. Besides this, the scheduling problem is defined for a group of robots
that operate at the same time, therefore it is a parallel machine scheduling
problem. To summarize, the MRTA problem in our setting is a sequence
dependent parallel machine tardiness scheduling problem with a common
due date P/STsd/

∑
Tj [37] (detailed in Section 3.1).

In this work, the optimisation problem of the mobile robot group be-
haviour is of much higher complexity, as detailed in Section 3.3. For this
reason, we apply a heuristic to solve a single MRTA problem, the shortest
adjusted processing time first (SAPT) algorithm [38]. This heuristic assigns
tasks in a sequence every time choosing the shortest adjusted processing time
task, the one that can be finished the soonest from all available tasks. The
same approach is referred to as iterated assignment, or broadcast of local
eligibility for the MRTA problem in [23]. The SAPT scheduling is optimal
for the sequence-independent single machine tardiness scheduling problem
(1/STsi/

∑
Tj) but nevertheless provides a good heuristic in the sequence-

dependent settings [39, 40].

2.3. Optimisation under uncertainty

Uncertainty in a problem means that parts of the problem are unknown or
random. These problems are called non-deterministic, and usually the un-
known or random parts of the problem can be represented with a distribution
of possible outcomes.
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Optimising action plans in a non-deterministic problem is challenging,
especially when full-horizon plans are necessary as in this work. A com-
mon approach to produce long-term plans for a non-deterministic problem is
determinisation. This way, the non-deterministic problem can be solved as
multiple deterministic problems. One common method is using all-outcomes
determinisation that considers all possible random outcomes [41]. This ap-
proach is beneficial when the uncertainty is represented by discrete uncertain
events, however it becomes intractable for a continuous random variable. An-
other possibility is hindsight optimisation (HOP), where instead of consider-
ing all possibilities, a Monte-Carlo simulation is applied to consider a limited
number of samples of the possible random outcomes [25]. The deterministic
problem is solved for each sample as if the outcome was known in hindsight,
providing an upper bound to the solution quality for that specific outcome.
After that, an aggregated solution is determined based on the solution for
each problem sample. The average utility of these solutions will provide an
upper bound to the solution for the non-deterministic problem.

2.4. Tree-search based optimisation

When optimisation is applied to problems with a large decision space often
tree-search is applied. Using a tree representation, the decision space can
be organised into a sequence of choices. Each node in the tree represents
a choice and its children represent different outcomes of that choice. The
most beneficial feature of the tree representation of the decision space is the
separation into branches that consist of related decisions. If an algorithm
can tell if a specific branch is suboptimal, it can be excluded from further
investigation.

In many cases, it is very difficult to determine the suboptimality of a
branch. Stochastic tree search techniques such as Monte Carlo tree search
(MCTS) [42] or rapidly exploring random tree (RRT) provide a way to ran-
domly expand the search tree towards more promising parts of the decision
space. The value of each branch is calculated as the tree is grown randomly
according to these values.

The tree representation is very effective for path planning. The tree nodes
represent states of the vehicle, while different children of a node represent
different control inputs (e.g. flight curvatures, accelerations or joint speeds).
This ensures the restriction of the decision space to trajectories that are
possible to follow by the vehicle.

9



Drawing this all together, we present an approach that provides a full-
horizon joint plan for the collaborative automated victim search problem,
optimised over the uncertainty in the victim locations. In more detail, full-
horizon plans are created by considering the mobile phone scanning as a
MRTA and the victim search as an UMRTA (uncertain multi-robot task
allocation, defined in Section 3.2) problem. Specifically, full-horizon plans
are created over the uncertain problem using a determinisation technique,
HOP, that extends the solution in [16]. Moreover, joint planning is achieved
by solving partial planning problems in an iterative process. We use realistic
sensor modelling for the mobile phone scan process, based on the model in a
very similar RF emitter search problem presented in [17]. As this paper also
presents a solution for the coordination of the scanning UAVs, we use their
method as a benchmark for the independent mobile phone scan planning. To
incorporate past and simulate future observations of mobile phone signals,
an observation model is applied that relies on a particle filter method. This
method is often applied in the state-of-the-art target search and capture
literature [43].

3. Task allocation problem

As introduced below, a fundamental problem underlying multi-robot collab-
oration is task allocation. In this section, we first define the details of the
multi-robot task allocation (MRTA) problem in our victim search setting,
then we propose an extension to it, the uncertain multi-robot task allocation
(UMRTA) problem introducing uncertainty in the tasks. By building on
these, we present an overall solution to the combined victim search problem.

3.1. Multi-Robot Task Allocation

As described earlier, both the victim search scheduling and the mobile phone
scanning problem can be formulated as a task allocation problem. Specif-
ically, we formulate them as a MRTA with single-task robots, single-robot
tasks, and time-extended assignment (ST-SR-TA) [23]. This means that
each robot can do a single task at once, each task can be done by a single
robot, and the robot actions are considered in an extended time horizon (task
schedule instead of a single task).

In our context, tasks are divided into two types: scan tasks (visiting a
certain location to scan for mobile phones) and victim search tasks (finding
a victim near the estimated mobile phone location). By performing these
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tasks, the robots aim to maximise the number of successful rescues resulting
from finding and collecting information about the victims in a disaster. As
the chance of a successful rescue decreases with time [44], we model this as
a linearly decreasing utility function4:

U(τ) = U0 − γt(τ), (1)

∑
τ∈T

U(τ) = U0|T| −
∑
τ∈T

γt(τ), (2)

where T is the set of tasks, t(τ) represents the time of completion of task τ ,
U0 is the initial utility of a task, and γ is the utility decrease factor. U0 and
γ are chosen so that the utility does not go below 0 within the mission time
(just as the chance of a successful rescue should not reach 0 during search
and rescue). Moreover, each of these tasks has a specific location which the
robots have to travel to in order to complete it. The time required to travel
between the specific tasks can be derived from the motion model of the robot
and the traversability of the area. These times can be regarded as necessary
setup times to execute a task.

This MRTA problem can be formulated as a parallel machine scheduling
problem (PMSP) of the following format: P/STsd/

∑
Tj [37]. In particular

it is an identical machine scheduling problem with sequence dependent setup
times where the aim is to minimise the total tardiness of the jobs with a
common due-date at t = 0 (Tj = t(τj)). The complexity of the problem
for a single machine and sequence independent setup times (1/STsi/

∑
Tj) is

polynomial when the due-date is common, however given sequence dependent
setup times (1/STsd/

∑
Tj) it becomes NP-hard [39]. Therefore the MRTA

problem, that is the parallel machine version of the above, is also NP-hard.
In the following, we define the MRTA problem as a tuple 〈R,T〉, where

R is the set of robots and T is the set of tasks. The solution consists of an
assigned task (xR) for each robot (R):

X = {xR ∈ T : ∀R ∈ R} .

3.2. Uncertain Multi-Robot Task Allocation
In realistic settings there might not be complete information about the tasks’
location or other parameters. In this case, the uncertainty about the tasks

4scan tasks are not directly associated with a utility, but instead are responsible for
discovering mobile phones and associated victim search tasks (detailed in Section 3.3).
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can be represented as a probability distribution. We define the UMRTA
problem as an MRTA problem with a random variable representing the set
of tasks: 〈R, T 〉. The random task set (T ) breaks into a set of known tasks
(T) and a set of uncertain tasks5 (T +): T = T ∪ T +.

In this case, the optimisation maximises the expected overall utility gain.
Accordingly, Equation 2 changes as follows:

E
T +

[∑
τ∈T

U(τ)

]
(3)

In contrast to the MRTA problem, uncertain tasks cannot be assigned
directly because their location is unknown. Therefore we allow the solution
to contain a general motion direction for a robot (D = [0, 2π)) besides the
set of known tasks (T). This allows us to move the robots to optimise their
position given the distribution of uncertain tasks, so that they are able to
reach tasks soon after they are discovered. Of course, these directions need
to be reassigned in a timely manner to navigate the robots efficiently. As a
result, the solutions will have the following form:

X = {xR ∈ T ∪D : ∀R ∈ R} .

3.3. Collaborative victim search problem

Having described the task allocation elements of the automated victim search
planning problem (MRTA and UMRTA), we now present the combined het-
erogeneous robot planning problem in the automated UAV victim search
setting. In this scenario, different tasks require a different set of skills and
sensors from the UAVs (high speed and RF sensors for mobile phone scan,
good maneuverability and live video for finding victims), so they split into a
group of mobile phone scanning UAVs and a group of victim search UAVs.

Scanning UAVs find mobile phones and estimate their locations, while
victim search UAVs move around the disaster area and find victims near the
mobile phone locations. As described earlier, long-term planning is necessary
to fully capture the collaboration aspect of the automated victim search
problem. To achieve this, the problem of scanning for mobile phones can be
formulated as a set of locations necessary to visit in order to cover the area.

5This means both the properties of the tasks in the set and the cardinality of the set
can be uncertain.
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To this end, the collaborative planning breaks into a classical task allocation
problem (MRTA) for the scanning UAVs and another task allocation problem
with possibly unknown task locations (UMRTA) for the victim search UAVs.

With this in mind, we define each victim search task with a 2D location of
a mobile phone and a time length (process time) based on how long it takes
to locate a victim (i.e. Tv ⊂ R2×R+). As all these parameters are estimated
using the observation model, the mobile phone location is the mean of the
phone location distribution and the task length is the expected search time.
Assuming a fixed search speed, the victim search process time is proportional
to the area of the possible locations of the mobile phone.

As the victim search task is to gather information about a possible victim,
there is very little known before this happens. For this reason, we use uniform
utility for the victim search tasks and their process time is according to the
detection area of a mobile phone (detailed in Section 7). Assuming complete
spatial randomness of the mobile phone locations, the task locations are the
outcome of a non-homogeneous spatial Poisson process [45] with intensity
function λ. This distribution frequently changes when a region is scanned or
new information is introduced about the disaster site.

Formally, the mobile phone scan MRTA problem is determined by the
set of scanning robots (Rs) and scan tasks (locations on a grid, Ts), while
the victim search UMRTA problem is determined by the set of victim finding
robots (Rv) and the random set of victim search tasks (Tv). The victim search
tasks can be divided into a set of known (Tv) and a random set of unknown
tasks, that can be modelled as a Poisson point process (T +

v ∼ Poisson(λ)).
Additionally, the connection between the scan and the victim search prob-
lems can be given by the closest : Tv → Ts function that associates the
closest scan task to a victim search task. This indicates the most likely scan
task that would discover the mobile phone associated to a victim search task.

Accordingly, the collaborative victim search problem is defined by 〈Rs,Ts,
Rv, Tv, closest〉, and the solutions will have the following form:

X = {xR ∈ Ts : ∀R ∈ Rs} ∪ {xR ∈ Tv ∪D : ∀R ∈ Rv} .

This describes the specific planning problem in the introduced setting. If
the problem contains multiple homogeneous robot groups, and their decision
making can be formulated into UMRTA (or MRTA) problems, the definition
can be formulated in a very similar way, and the planning method can be
easily adapted.
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4. Multi-robot planning

We now detail the planning approaches used in the evaluation. Some al-
gorithms are selected or modified to suit the UAV platforms used in the
evaluation (see Section 7). Specifically, we intend to use fixed-wing UAVs for
scanning for mobile phones, and rotary-wing UAVs for victim search. These
roles are chosen to best suit the capabilities of the platforms and best practice
in the literature [1, 2] following consultations with Rescue Global [46].

4.1. MRTA planning with SAPT scheduling

After considering several (many of them identical) heuristics to solve the
MRTA problem [23] we chose the shortest adjusted processing time first
(SAPT) algorithm, the heuristic that is tailored for tardiness scheduling
problems with common due date (detailed in Section 2.2). In detail, we
define the adjusted processing time as follows:

AP (τi, [s, τj]) = AP (τj, s) + trav(τi, τj) + P (τi). (4)

AP (τ, s) represents the adjusted processing time of task τ after schedule s
(equals t(τ) in Equation 1 assuming the schedule is followed by the robot),
[s, τ ] stands for a schedule where task τ is inserted at the end of schedule
s, trav(τi, τj) is the necessary travel time between task τi and τj (sequence
dependent setup time), and P (τ) is the process time of task τ .

4.2. Victim search planning with gradient descent

Without planning under the uncertainty of expected mobile phone locations,
the best choice is to direct the victim search robots closer to the likely mobile
phone task locations in order to decrease the time necessary to approach
them when the phones are identified. For this purpose, we use gradient
descent on the task intensity to make use of the task distribution knowledge.
This robust approach does not need the tuning of additional parameters
that potential fields, the other commonly used approach for guiding robots
towards beneficial locations [30], requires (as discussed in Section 2.1).

In more detail, we apply task allocation for the set of known victim search
tasks (Tv), and use gradient descent to direct the robots when there are no
victim search tasks assigned to them. In several settings there are large
constant intensity areas where the gradient descent is unable to provide a
direction. In these cases, robots are directed towards central areas in order
to minimise the expected distance from upcoming tasks. In detail, victim
search UAVs with no assigned tasks will travel:
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• towards the nearest nonzero intensity location if outside the affected
area,

• otherwise along the gradient of the task intensity, or

• towards the mean of the task distribution if the gradient is zero.

4.3. Victim search planning with with HOP

In this approach, instead of ignoring the task distribution for the planning
of the victim search allocation, HOP (described in Section 2.3) is used to
solve the UMRTA problem. HOP has been shown to effectively incorporate
probabilistic information for a similar problem domain for a generic temporal
planner (see discussion in Section 2.1). Unfortunately the introduced tem-
poral planner in [16] does not scale well with the size of the problem due to
the iteration through the possible resulting states. By contrast, we present
a novel HOP planner that is able to solve the planning problem without dis-
cretising the state space. Our method provides a computationally efficient
solution in an obstacle-free environment. Specifically, it does not create plans
for all the possible future states, it rather finds the most beneficial direction
of travel using the solutions for the current state. This approach simplifies
the computation and is able to provide a solution in a continuous state space
(as per the first contribution in Section 1).

The HOP planner incorporates the distribution of unknown task loca-
tions, using a Monte Carlo simulation. It provides solutions for independent
samples of the distribution as if it was a deterministic planning problem
(MRTA in this case). As a result, the maximisation criterion (Equation 3)
is approximated as follows:

E
T +
v

[∑
τ∈Tv

U(τ)

]
≈ 1

N

N∑
i

∑
τ∈Tv∪tiv

Usch(τ) (5)

In detail, the expected utility is estimated by the average of the utilities
(Usch(τ)) determined by the SAPT MRTA scheduler’s (Section 4.1) resulting
in schedules (sR,i) for N samples (tiv) of the Poisson process (T +

v ). Note
that the MRTA scheduler can be replaced with any MRTA solver for a spe-
cific application (e.g. an auction-based negotiation combined with RRT path
planning [14] or simulated annealing [38]).
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The maximisation is applied on this utility estimation, and as a result,
the rotary-wing robot actions are determined. This process is detailed in
Algorithm 1.

Algorithm 1 HOP UMRTA Solver

Require: Tv: set of known victim search tasks
Require: Rv: set of victim search robots
Require: N : size of the Monte Carlo simulation
Require: sR,i,∀R ∈ Rv, i ∈ {1..N}: hindsight schedules

1: for all R ∈ Rv do
2: τ ∗ = arg maxτ∈Tv countNi=1 (τ = first(sR,i))
3: if countNi=1 (τ ∗ = first(sR,i)) >

N
2
then

4: xR ← τ ∗ . assign task τ ∗ to robot R
5: else
6: d = meanNi=1 [w(sR,i) ∗ dir(R, first(sR,i))]
7: xR ← d . assign direction d to robot R
8: end if
9: end for

Ensure: X = {xR : ∀R ∈ Rv}: chosen actions for robots

Specifically, function first(s) returns the first task in schedule s, and
dir(R, τ) calculates the direction that robot R has to take to move towards
task τ . In general, for each robot, the aggregation will assign either the
most commonly assigned first task in the schedules (τ ∗) to the robot or the
weighted average of the direction of the first assigned tasks. Specifically, the
algorithm iterates over all robots, and finds the most commonly assigned
first task (τ ∗ ∈ Tv) in its schedules (Line 2). If it is assigned as first in the
majority of the schedules (> N

2
), the robot’s instruction will be to execute

task xR = τ ∗, otherwise it will be a general heading direction (d ∈ D) as
in Line 6. This direction is a weighted average of the first assigned tasks’
directions, where the weight represents the number of tasks in a schedule
(w(s) = |s|). This weight indicates how many tasks are going to be delayed
if the execution of the first task is delayed.

This weighted average will provide the optimal direction of movement to
maximise the utility estimate in Equation 5. This, of course, only provides
optimality assuming perfect hindsight knowledge of the random task set for
each sample (tiv). In particular, this means it is only optimal given that the
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outcome of the random variable is known by the next time step. The proof
of this hindsight optimality is given in Appendix A.

4.4. Mobile phone scanning with MCTS path planning

This approach builds upon the work in [17] where multiple fixed-wing UAVs
locate RF emitters and decrease the uncertainty of their locations. This
problem formulation is very similar to our mobile phone scanning problem,
therefore their approach can be applied directly for the path planning of
the scanning robots. In our simulation, we use a Monte Carlo tree search
(MCTS) [42] tool (rather than a rapidly exploring random tree as mentioned
in the paper) that reproduces the behaviour of the path planner detailed in
this work. In detail, the MCTS engine uses the immediate reward default
policy described in [17], and uses the UCB as a tree policy that provides a
better performance than a flat tree policy suggested by the original algorithm.
Because the task in our case is to find all mobile phones in the disaster
area, rather than decreasing the uncertainty of specific RF emitters, we use
the intensity of the posterior distribution of unobserved targets (detailed in
Section 7) as the cost map.

4.5. Mobile phone scanning using MRTA

Producing a long-term plan is crucial in order to make strategic decisions
with the robots that brings benefits at a later stage. As discussed in the
related work, long-term planning is not possible with classical path planning
using motion primitives, a set of goals need to be defined instead. This is
why we use task allocation for the scanning problem as well, defining a set
of locations that will ensure the full coverage of the area.

To that end, we use the SAPT scheduling approach explained in Sec-
tion 4.1, although the standard tardiness scheduling problem is slightly mod-
ified to suit the motion model of a fixed-wing. In particular, when maneu-
vering a fixed-wing aircraft, the path length can be highly affected by the
direction of passing through a specific location. This means not only the
task schedule, but also the desired heading for each task needs to be deter-
mined. In order to cope with this, each scan task is split into a number of
tasks with different headings (we used 8 for the simulation). The adjusted
processing time (AP ) is determined for each heading, but for each location
only the heading with the shortest adjusted processing time is considered for
execution at each scheduling step.
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4.6. Joint planning with HOP

The joint planning approach presented below is the first that is able to pro-
duce a joint plan in a collaborative setting while planning under uncertainty
and not limiting the planning horizon (as per the second contribution in Sec-
tion 1). It shows a way to produce online plans under uncertainty for groups
of robots when their tasks impose temporal constraints on each other. At
the same time, it incorporates long-term temporal effects between tasks by
achieving a full-horizon plan.

Specifically, our joint planning approach creates a combined plan for the
scanning and victim finding robots via an iterative process6. At each iteration
step, one of the robot groups (mobile phone scanning UAVs or victim finding
UAVs) optimises their plan according to the current plan of the other group.
This way, the solution quality can be further improved by taking the relations
between the scan and victim search activities into account (scan tasks result
in discovering nearby mobile phones that create victim search tasks).

Victim search plan optimisation uses the scan plan to introduce a
temporal constraint on the scheduling problem of victim search tasks. Ac-
cordingly, the adjusted processing time in Equation 4 changes as follows:

AP ′ (τ, s) = max (AP (τ, s) , cstr(τ)) . (6)

Function cstr(τ) represents the temporal constraint, it is the time when task
τ is discovered according to the current scan plan. In brief, the execution
time of each “hindsight task” is delayed until discovered according to the
current scan plan. The MRTA scheduling problem is solved using SAPT
(Section 4.1) using the adjusted processing time in Equation 6.

Also, these constraints need to be considered when solving the UMRTA
problem using HOP (Section 4.3). The weights (w) in Line 6 of Algorithm 1
need to be adjusted to further produce the optimal direction of movement
as per Theorem 2 (Appendix A). Tasks that are delayed by the introduced
temporal constraints do not increase the urgency of a schedule, because a
small delay in the schedule will not delay their execution. For these reasons,
these tasks should not be counted in the weights. Accordingly, here w(s) is
the number of consecutive non-delayed tasks at the beginning of schedule s.

6Our empirical studies show that an iteration lengths above 5 do not produce significant
changes in the overall result, so we chose 5 iterations in the evaluation to minimise the
computation time.
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Fixed-wing planning optimisation does not simply minimise the ex-
ecution time of the scan tasks using the plan of the other group. Rather the
subject of optimisation is to improve the victim search, as the utility comes
from the time when victims are found. Therefore, the optimisation is applied
to minimise the delay introduced on the victim search tasks by the temporal
constraints (introduced in Equation 6). Due to the nonlinearity of this mea-
sure, building an increasing plan by adding tasks to the end of the schedules
(as in SAPT scheduling) would not result in a good quality solution. For
this reason, we need a method that can cope with this characteristic. Our
approach is to sequentially introduce tasks and insert them into a position
of a schedule with minimal cost, similarly to the MURDOCH negotiation
process [47], detailed in Algorithm 2.

Algorithm 2 Fixed-wing Plan Optimisation

Require: Ts: set of scan tasks
Require: I = {tτ : ∀τ ∈ Ts}: timings from rotary-wing plans
Require: Rs: set of fixed-wing scanning robots

1: T′ ← Ts: unassigned scan tasks
2: sr ← ∅,∀r ∈ Rs: fixed-wing robot schedules
3: while T′ 6= ∅ do
4: τ ∗ = arg min∀τ∈T′ min tτ
5: 〈r∗, i∗〉 = arg min〈r,i〉;∀r∈Rs,∀i≤|sr|∈N ∆ (sr, τ

∗, i)
6: sr∗ ← insert (sr∗ , τ

∗, i∗) . Insert τ ∗ to schedule
7: T′ ← T′ \ {τ ∗} . Remove from unassigned tasks
8: end while

Ensure: S = {sr : ∀r ∈ Rs}

Here, tτ is a set of times when victim search could be initiated (according
to the current rotary-wing plans) at locations that are the closest to the scan
task τ : tτ = {AP (τi)−P (τi) : ∀τi where closest(τi) = τ}. The insert (s, τ, i)
function inserts task τ into schedule s in the ith location. Besides that, D (s)
estimates the delay caused by schedule s:

D (s) =
∑
τ∈s

∑
q∈tτ

max (0, t(τ, s)− q), (7)

∆ (sr, τ, i) = D (insert (sr, τ, i))−D (sr) . (8)

In Equation 7, t(τ, s) denotes the execution time of task τ within schedule
s. In brief, Algorithm 2 inserts available tasks – starting with the most urgent
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ones – into the mobile phone scanning robots’ schedule using minimal inser-
tion. Specifically, the most urgent task is selected as the one with the soonest
victim search initiation time (Line 4). Having selected this task, the best in-
sert location is determined within the current schedules (Line 5). The best
position is determined by minimising the delay estimate’s increase (Equa-
tion 8) computed based on the information from the rotary-wing robots’
plan (I = {tτ : ∀τ ∈ T}).

Although this specific joint planning method applies for the planning
problem presented in Section 3.3, it can easily be applied for joint planning
for problems with different structures as suggested at the end of the same
section. Specifically, after determining how the behaviour or the utility gain
is modified for each group through the task relations (as per Equations 6 and
7) an incremental planning algorithm can be applied to maximise the utility
in the given context for each robot group resulting in a joint plan.

5. Fixed-wing short-term path optimisation

A further benefit of long-term joint planning is being able to use the other
robot’s plans for behaviour optimisation (as mentioned in the third contri-
bution in Section 1). By solving the mobile phone scanning as a MRTA, we
restrict the actions of the mobile phone scanning UAVs to only pass over
a grid of locations. On the other hand, a path planner algorithm can take
advantage of the manoeuvrability of the UAVs and find more informative
routes for them.

Given this, in this section we show a way to preserve the long-term plans
produced by the joint planner, and combine them with a short-term path
planner to improve the victim search performance. The empirical evalua-
tion (Section 8) shows that doing so improves the overall performance by
decreasing the length of victim search tasks, but this is only beneficial when
the robots are aware of the plans of other robots (the joint plan).

Initially when using the task allocation based planning (detailed in the
previous section), the mobile phone scanning UAVs take the shortest path
between the scheduled scan tasks (locations on a grid). However, sometimes
it is beneficial to deviate from this path in order to make more valuable
observations about the nearby mobile phones’ signals. Of course this means
that the rest of the scanning schedule is going to suffer delays due to the
longer path taken to the next scan task. In order to assess this benefit
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and drawback of taking a specific route deviation, the differences have to be
translated into utilities.

In order to optimise possible deviations from the shortest path, we use a
standard MCTS method with the information provided by the observation
model. This method provides individual optimisation for search agents that
can make use of the joint plan of all agents. In more detail, when taking
more informative observations about a mobile phone’s location, its location
uncertainty (the victim search area) decreases. In order to approximate this
decrease, we use a Monte Carlo method using a three-step process. First,
possible mobile phone locations are sampled from the current belief from
the observation model of observed mobile phones. After that, mobile phone
signals are simulated from these locations along the specific path. Finally,
the area decrease is estimated by an update step of the particle population
based on these simulated signals. This decrease in the search area advances
the schedule of the assigned victim search robot. It therefore causes this
victim search task and the following tasks in the UAV’s schedule (the ones
not delayed by the scanning) to finish sooner. If the area decrease is of small
increments, we can assume that each of the affected tasks finish the same
∆t = ∆A/vs earlier, where ∆A is the decrease in the victim search area and
vs is the victim search speed of the UAV. In this case the only information
needed from the victim search UAV plans is E [w(τ)], the expected number
of consecutive tasks after a specific task that are not delayed by the scan
process according to Equation 6:

∆U+
τ (∆t) = (1 + E [w(τ)]) ∗ γ ∗∆t. (9)

On the other hand, when making a detour in the route of a scanning
UAV, it is going to cause delays in the further scan process. The deviation
causes ∆t = (s′ − s)/vf delay, where s′ and s is the length of the deviated
path and the original path respectively, and vf is the cruising speed of the
mobile phone scanning UAVs. This delay is the same for all scan tasks in
the UAV’s schedule. The utility decrease comes from increasing the imposed
delays on the victim search of the currently unknown mobile phone locations
(D in Equation 7). If this ∆t (the delay from the original plan) increases with
small δt increments, the delay increase can be estimated by the number of
delayed tasks by scan schedule s (Nd,s(∆t)): ∆D ≈ δt∗Nd,s(∆t). Because the
number of delayed tasks comes from N independent samples of the possible
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mobile phone locations, division by N is necessary to get the expectation:

∆U−s (δt,∆t) = −Nd,s(∆t)

N
∗ γ ∗ δt. (10)

Using these two measures, we can quantify the utility difference between
two slightly different routes:

∆U =
∑
τ∈Tv

∆U+
τ

(
∆Aτ
vs

)
+ ∆U−s (δt,∆t) , (11)

where ∆Aτ is the difference in the victim search area estimate for task τ for
the two routes, Tv is the set of known victim search tasks, and δt (� ∆t) is
the time difference between completing the two routes. This formula is used
as an immediate cumulative reward for a Monte Carlo tree search (MCTS)
engine that is run on a time-limited basis [42]. The tree search uses the
standard UCT tree policy that compares the achieved utility gain to the
utility gain of taking the shortest path (c =

√
2 ∗ Ushortest). The outcome of

the MCTS is then verified against the original planned path and applied in
case it increases the overall utility.

The utility gain calculation is highly dependent on data from the plans of
other agents. However, when using a decomposition technique, such data is
not available and the robots are not aware of the plans of other robot groups.
In these settings, we have substituted the plan-based values with constants
and simple heuristics. Specifically, the expected number of delayed tasks is
approximated with an average value in the current scenario7 E [w(τ)] = wo,
and the number of delayed tasks is substituted with a simple linear function8

Nd(∆t) = Nd0 + α∆t.

6. Robot communication

In this section we detail the communication between the robots, detailing the
requirement of perfect communication and the required bandwidth. These
requirements are crucial for a physical deployment of the system in the future.

7Chosen to be 10 for 12 rescue UAVs and 200 rescue tasks. This means about 17 tasks
on average for each UAV, so the average number of tasks following a task is around 8, but
we expect already observed tasks to be sooner in a schedule.

8The value of Nd0 does not affect the result, as the delay is compared to the initial
(shortest path) solution, α is chosen 7 task/s.
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The communication can be split into two categories, broadcast communi-
cation and point to point communication. These two categories are discussed
in the following sections.

6.1. Broadcast communication

Broadcast type messages serve the purpose of updating the state of the victim
search problem and synchronising the robot group’s behaviour.

The update of the victim search problem consists of the update of the
state of each robot9, the state of each task10, and the update of the available
information about undiscovered mobile phone locations (distribution of T +).
These updates are not essential for the robot collaboration, if some messages
are lost due to imperfect communication, the collaboration is still achieved.
When some messages are lost, the solution might be suboptimal in some
cases, but the impact on the overall solution quality is low according to
our preliminary tests [48]. As for the required bandwidth, the robot and
task position update requires minimal bandwidth, while the update of the
distribution of undiscovered mobile phone locations requires the transmission
of a larger amount of data. In the presented evaluation, the distribution is
an array of approximately one million elements, stored as 8 MB of data.
However, the amount of data can be easily compressed11 as high precision is
not required and many of the values are 0.

The current implementation of the synchronisation of the behaviour of
robots is achieved using broadcast messages. This assumes prefect commu-
nication, and would fail to update the robot decisions if some messages are
lost. However, this synchronisation can be achieved through different means
on physical robots. One possibility is using synchronised clocks to time the
robot decision making behaviour [49]. An alternative would be not using fix
intervals for decision making, but starting a new decision making process as
soon as the robot and the task states are updated. Our evaluation uses fix in-
tervals for decision making for easier comparison of different decision making
approaches. The synchronisation messages do not convey data, therefore do
not represent a significant portion in the overall communication bandwidth.

9A 2D position for each robot.
10A 2D position for each mobile phone scan task, and a 2D position and process time

for each victim search task.
11For example, the initial value occupies only 40kB of space when saved as a png image.
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6.2. Point to point communication

Point to point messages provide information exchange between robots while
running the collaboration algorithms. In the following, the message types
are listed and the requirement for perfect communication and bandwidth
requirement is detailed for each:

1. Messages between mobile phone scanning robots: There are no mes-
sages between mobile phone scanning robots for the collaboration algo-
rithm, the same algorithm is recomputed independently on each robot.

2. Messages between victim search robots: The decentralised algorithm
processes independent samples on each robot, and the end result is
shared between the robots. This means each robot sends the relevant
part of each solution of the HOP process to every other robot. The
transferred data consists of the first task or its direction and the length
of the schedule, so the message consists of a 2D vector (direction and
schedule length) and an integer (task ID) for each HOP sample. In
case of imperfect communication, some message data would be lost,
but that only means that the HOP solution uses fewer samples, that
has only a minor effect on the solution quality.

3. Messages from victim search robots to mobile phone scanning robots:
These messages convey the information about the timings of the victim
search robots for the mobile phone scanning robots, I in Algorithm 2.
The information about the number of delayed tasks is also necessary for
the short-term path-planning optimisation (Nd,s(∆t) in Equation 10).
The data includes the location, HOP schedule timing and the number
of consecutive tasks for every HOP task. If some messages are lost due
to imperfect communication, the number of HOP samples decrease in
the timing information. Similarly to the previous case, this only has a
minor effect on the solution quality.

4. Messages from mobile phone scanning robots to victim search robots:
These messages provide the constraints for the victim search MRTA
scheduling problems, cstr(τ) in Equation 6. The message data in-
cludes the location and planned execution time of mobile phone scan-
ning tasks. If some of these messages are lost, the MRTA problems
can be computed using information received earlier. In this case the
victim search robots might react with a little delay when mobile phone
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scanning robots change their plan and there is a temporary loss in
communication. Another possibility is that the number of iterations
for the joint planning (Section 4.6) decrease if some messages are ran-
domly dropped.

None of these messages require perfect communication, as a temporary
communication loss or some dropped messages do not result in a major defect
in the collaboration.

Message Size [byte] Optimised size Frequency
Robot update 72 10 |Rs|+ |Rv|

Task update 24 (|Tv|+ |Ts|) 12 (|Ts|+ |Tv|) 1
Distribution u. 7 964 128 ≈ 41 000 1

Type 2 24 ∗Nhop 12 ∗Nhop 3 ∗ |Rv| ∗ (|Rv| − 1)
Type 3 32 ∗Nhop ∗ |Tv| 7 ∗Nhop ∗ |Tv| 3 ∗ |Rv| ∗ |Rs|
Type 4 24 ∗ |Ts| 6 ∗ |Ts| 3 ∗ |Rv|

Table 1: Summary table of communication details

Table 1 summarizes the message sizes in the implementation for the eval-
uation, and an approximate message size after optimisation of the message
content besides the frequency of messages. The rows represent different mes-
sage types, three broadcast update messages detailed in Section 6.1 and three
robot-to-robot messages listed in Section 6.2. The message size of the current
implementation, the approximate message size of a bandwidth optimised im-
plementation, and the frequency of messages, the number of messages sent
each cycle12, are detailed for each message type.

Here Nhop represents the number of HOP samples processed by a single
victim search robot and the overall number of HOP samples processed is
N = Nhop ∗ |Rv| (detailed in Section 4.3). Substituting the values used
in the evaluation, the amount of communication between the robots can
be calculated: |Rs| = 2, |Rv| = 16, |Ts| = 108, |Tv| / 200, |Tv| / 200,
Nhop = 9. Overall sent data each cycle in the current implementation is
< 13.2 MB, while the same number with bandwidth optimised messages
decrease to < 1.3 MB. This amount of data is sent in the system every 10 s
cycle, resulting in an average bandwidth of 1.3 MB/s and 0.13 MB/s for all

12The cycle time in the evaluation is 10 s.
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messages in the system. This is not the bandwidth requirement for a single
link of the system, it counts all sent messages. Point to point messages may
not need to be transferred over the same communication link depending on
the means of robot communication. Point to point messages decrease the
required bandwidth if independent communication links are present between
robots.

7. Experimental setup

To evaluate the performance of our automated victim search approach, we
chose the 2010 Haiti earthquake. We did this for the following reasons.
Firstly, the official disaster assessment data is available from the United
Nations [50] and this provides high resolution data about the destruction
after the earthquake that allows us to create a realistic simulation. This
earthquake is also an illustration of poor organisation and information dis-
tribution between first responders. For example, only half of the search and
rescue (SAR) sectors could be completed in the first week [51] and the poor
information management made the collaboration of different agencies very
difficult [52]. Given this, we would like to show how our automated victim
search approach could have helped save lives by providing crucial information
about some of the victims within a couple of hours using a smaller team of
first responders.

In more detail, our experiments simulate a first response scenario in Car-
refour after the earthquake. As disaster responders arrive at the site, they
send an automated group of UAVs to identify the first rescue locations for
the SAR team. The UAV group consists of fixed-wing mobile phone scan-
ning UAVs and rotary-wing victim search UAVs. The fixed wing aircraft
carry equipment to create an ad hoc mobile network that allows emergency
responders to push message/calls to the mobile phones in range [10, 11]. The
equipment is also able to locate the mobile phones by their signal strength
using a similar approach to [17]. The emergency responders select the mo-
bile phones that they prioritise given the result of the communication with
the individual phones. These selected phones’ locations are then automat-
ically visited by one of the rotary-wing UAVs. As a mobile phone location
is visited, the victim search process starts around the location. The victim
search is carried out by the teleoperation of a disaster responder professional
to collect the necessary information for the SAR triage process.
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Grade Description P(phone) #buildings #phones
1 Negligible to slight damage 0.000780 59 377 46.29
2 Moderate damage - 0 0
3 Substantial to heavy damage 0.004873 2 118 10.32
4 Very heavy damage 0.012182 3 988 48.58
5 Destruction 0.030455 3 113 94.81
Σ 68 596 200.0

Table 2: Assessment damage grades, probability and expected number of mobile phones

For the mobile phone detection, we apply a particle filter-based proba-
bility distribution model using the sensor modelling in [17] but additionally
incorporate information from negative observations as well as positive ones.
This allows us to determine the posterior for unobserved targets and the
distribution of the uncertain tasks (T +) in the UMRTA problem of the col-
laborative victim search problem (Section 3.2 and Section 3.3). More details
about the sensor model can be found in [48]. The initial value of this pos-
terior is the belief distribution of undetected mobile phones on the disaster
site when the mobile phone is first detected (Poisson(λ)). This distribution
is periodically updated based on the recent observations.

The UN dataset contains the location and the damage status of each
building in the area. The damage grading is explained in Table 2. We have
assigned a chance for each building for a mobile phone to request help in its
proximity. There were over 15 000 messages that were made available to the
Ushahidi Haiti Project, where the frequency of tags falling in the category
of emergency is 5% [53] and Carrefour contains 25% of the tagged build-
ings in Haiti. These statistics result in about 200 mobile phones requesting
emergency help from the 68 596 building locations in Carrefour. The mobile
phone locations were determined by a two dimensional random distribution
with standard deviation σ = 9.1 m (the average closest building distance to
a building) added to the building location from the dataset.

The resulting random process to generate the ground truth mobile phone
locations for the simulations is an inhomogeneous 2D spatial Poisson point
process [45]. The intensity of the spatial Poisson process based on the de-
scription above (ground truth intensity) can be seen in Figure 1a. The robots’
initial belief of the intensity of the mobile phones at different locations can
be seen in Figure 1b. This map is generated based on a rough perimeter
area of Carrefour and 50 simulated reported locations (e.g. first incoming re-
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ports via social media or emergency channels). The locations of these reports
are drawn from the ground truth Poisson process, and added on the belief
intensity as 20 times wider Gaussian functions than the ones used for the
individual buildings. The resulting intensity imitates a basic intensity map
manually generated by a first response team using the available information
of the approximate area perimeters and 50 report locations. There is a large
difference between the scale of the mobile phone density in the two inten-
sity functions. This is because the high detail in the ground truth intensity
function includes much higher peaks than the less detailed, smoother belief
intensity function. Although, the expected number of mobile phones (the
integral of the intensity function) is 200 in both cases.

(a) Haiti ground truth intensity [phone/m2]

(b) Haiti initial belief intensity [phone/m2]

Figure 1: Intensity maps of the Poisson point processes
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Parameter Fixed-wing UAVs Rotary-wing UAVs
Maximum speed 22 m/s 10 m/s

Maximum acceleration - 3 m/s2

Minimum turn radius 60 m -
Cruise height 50 m varying

Mobile phone detector range 300 m -
Victim search speed (vs) - 40 m2/s

Number of platforms 2 12
Number of tasks 108 avg. 200

Table 3: UAV parameters

The performance of the planning approaches is evaluated empirically with
128 different possible disaster outcomes that is sufficient to show statistical
significance. Each outcome is an independent sample from a Poisson process
with the ground truth intensity introduced above, and the approaches are
run with the same set of disaster outcomes.

We have chosen realistic parameters for the fixed-wing and rotary-wing
aircraft13 that can be seen in Table 3. In our scenario, once the estimated
mobile phone location is automatically reached by rotary-wing UAVs, they
are teleoperated by emergency responders to find a victim and collect infor-
mation for the triage process. The time length of the teleoperated victim
search process is estimated during the simulation based on the location error
of the mobile phone estimate. We assume the victim search starts at the
location estimate of the mobile phone and spirals out from there with con-
stant speed. Using this approach, finding a victim will take tf = e2loc/vs time,
where eloc is the location estimate error distance and vs is the victim search
speed14.

We chose a small number of fixed-wing aircraft due to the expensive sensor
equipment and the safety pilot requirement for operating these platforms We
have a higher number of inexpensive small rotary-wing camera UAVs that
are easier to deploy. Their number is only limited by the number of possible
disaster responders teleoperating them in order to find information about

13The specifications are based on the ING Robotic Aviation Serenity fixed-wing [54] and
senseFly Albris rotary-wing UAVs [55].

14Based on our analysis of a post-disaster UAV footage, we chose the scanning speed
equivalent to searching a 20 m wide area with 2 m/s speed.
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Figure 2: UAV start locations and scan task locations

possible victims. The initial mission setup can be seen in Figure 2 over the
overview of the UN dataset (damaged buildings marked with orange and
yellow). In detail, the blue edge marks the perimeter of the belief intensity
(Figure 1b) and the dark areas are the high intensity regions in the same
map. There are two fixed-wing UAVs that take off on larger roads near the
perimeter of the area. These locations are marked with red crosses in Figure 2
(in sectors C01 and D12). There are 12 rotary-wing UAVs that take off from
3 locations in manageable-size groups of 4. These locations are larger fields
where infrastructure can be set up for controlling them such as a university
garden, a college park and a stadium. The locations are marked with green
crosses in Figure 2 (in sectors C06, D08, and E11). The predefined tasks
for fixed-wing mobile phone scanning UAVs are marked with red circles and
are placed on a grid with 592 m spacing that is twice the detection range
(measured on the ground) of a fixed-wing UAV flying at 50 m height, higher
than the tallest building in the region15.

The chosen environment16 is portable, it can be run under a range of op-

15We ran simulations with different variations of these parameters, but the results were
broadly similar.

16A Python and NumPy based environment using ZeroMQ for communication.

30



erating systems, and popular on embedded platforms on robots both in terms
of the runtime and the communication. The UMRTA planning is distributed
by running only N/Nrw Monte Carlo simulations, where N is the number of
intended samples, and Nrw is the number of rotary-wing UAVs. The rele-
vant results of these Monte Carlo simulations are then exchanged between the
UAVs. In this way message losses are not crucial, they only lead to a smaller
number of samples processed, and the computational load is distributed be-
tween the UAVs. The fixed-wing plan optimisation (Section 4.6) is computed
independently on each process, but due to its deterministic nature, the result-
ing schedule is identical. The state of the UAVs are broadcast periodically
and all plans are computed accordingly. This ensures the system to rapidly
adapt to UAV dropouts. The UAV simulators accept waypoint commands
that are the standard for open-air UAV coordination. To sum it up, these
features result in a system that is very close to physical deployment. The
software system is released here: https://bitbucket.org/zbeck/thesischapter5.

In the following, the results of the conducted experiments are introduced.
The statistical significance is tested by comparing the relative performance
against our approach for each run that used the same victim locations as a
one-sample t-test with 95% confidence level. Specifically, we use the average
time of finding a victim as a performance indicator. This gives a direct
comparison of the overall utility gained by the different approaches according
to the utility definition (Equation 2). The lower this metric, the higher the
SAR performance.

8. Experimental results

In this section the performance is evaluated for all possible combinations
of the previously detailed approaches in the above settings. Consequently,
there are eight different planning methods that show different approaches
for the mobile phone scanning and for how victim search UAVs cope with
uncertainty. In detail, the planning methods for fixed- and rotary-wing UAVs
are compared for the evaluated approaches in Table 4.

Our baseline approach, MCTS Grad, uses independent mobile phone
scanning using a MCTS implementation based on the state-of-the-art for
RF emitter scanning with multiple fixed-wing UAVs [17] and deterministic
MRTA for scheduling finding victims using gradient descent when no tasks
are assigned to an agent (see Section 4.2). We evaluate the effects of different
planning features in the previously detailed realistic setting:
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Name Mobile phone scan Victim search Joint
MCTS Grad MCTS based on [17] Gradient descent No
MCTS HOP MCTS based on [17] HOP No
Indep Grad SAPT MRTA Gradient descent No
Indep HOP SAPT MRTA HOP No

Collab Collaborative MRTA HOP Yes
Indep Grad Man SAPT MRTA & MCTS Gradient descent No
Indep HOP Man SAPT MRTA & MCTS HOP No

Collab Man Collab. MRTA & MCTS HOP Yes

Table 4: Planning methods used in the compared approaches

1. Long-term task allocation planning (SAPT MRTA) for the fixed-wing
scan (Section 4.2),

2. Hindsight optimisation (HOP) for planning under the uncertainty of
mobile phone locations with rotary-wing UAVs (Section 4.3),

3. Collaborative (joint) planning with fixed- and rotary-wing UAVs (Sec-
tion 4.6),

4. Long-term planning with short-term path optimisation using Monte
Carlo tree search (MRTA & MCTS) for fixed-wing scan (Section 5).

The overall performance comparison can be seen in Figure 3a. Based on
our utility definition (Equation 2), the average time when victims are found
gives an appropriate comparison between different approaches for the same
simulation outcome, and it is also independent of the number of victims at
the specific simulation setting. All the presented planning features improved
the overall performance compared to the baseline approach:

1. The long-term planning allowed the search to explore the area more
efficiently, not leaving isolated areas behind. This improved the overall
performance by 12% (Indep Grad vs MCTS Grad).

2. Hindsight optimisation significantly improved the performance in the
independent planning settings compared to the gradient descent ap-
proach (Indep Grad vs Indep HOP : 3.3% and Indep Grad Man vs
Indep HOP Man: 5.1%). This is because long-term planning under
uncertainty provides a possibility for victim search UAVs to split up
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(a) Average of time when victims are found.

M
CTS G

ra
d

M
CTS H

OP

In
de

p 
Gra

d

In
de

p 
HOP

Coll
ab

In
de

p 
Gra

d 
M

an

In
de

p 
HOP M

an

Coll
ab

 M
an

Approach

60

80

100

120

T
im

e 
[s

]

(b) Average time a rotary-wing UAV takes to find a victim from
arriving to the estimate mobile phone location.

Figure 3: Overall performance comparison with 95% confidence intervals.

and cover different areas rather than all travel towards the first mobile
phone locations. HOP is also a necessary step for collaborative plan-
ning with the UAV teams, because the connection between the search
and the rescue problem lies within the not yet searched regions.

3. Joint planning of the long-term plans also increases the performance.
There is a 6.9% improvement without the fixed-wing path optimisation
(Indep Grad vs Collab) and 12.5% with the optimisation enabled (Indep
Grad Man vs Collab Man). This is in line with the results in [24].

4. The short-term fixed-wing path optimisation significantly improved (by
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5.4%) the performance when it could take advantage of the plans of the
teams of the UAVs to prioritise important scan or victim search tasks
(Collab vs Collab Man). Also, there is no significant improvement
when the plans are substituted with heuristics (Indep Grad vs Indep
Grad Man and Indep HOP vs Indep HOP Man). This shows how
being aware of the full plan can be beneficial when using individual
optimisation techniques. This information can identify the priority
of actions in relation to the actions of others, therefore makes such
optimisation techniques more efficient.

Altogether, there was an 24.7% improvement between the baseline approach
and the approach with all enhancements. All computation was done using
a single core of an Intel Xeon E5-2670 processor per UAV while meeting
the computational time limit that a real-time system would face. The long-
term planning was done every 10 s, while the short term planning every
1 s; therefore long-term planning had a 10 s, and short-term planning has
1 s computational time limit. The tree-search techniques are anytime ap-
proaches, so they were stopped after the computational limit was reached,
while the collaborative planning has a fixed computation time depending on
the complexity of the problem (cubic in terms of the number of scanning
tasks). The computation time of the collaborative planning is well below the
real-time limit, and this limit is only reached when having over 400 scanning
tasks based on our tests.

Providing some insight into the behaviour of the approaches, Figure 3b
shows the average process time of victim search tasks and the average time
rotary-wing UAVs took to find victims near the sensed location of mobile
phones. There is a clear improvement in this measure when the fixed-wing
path optimisation is added, but only when it can make use of the joint
plans of the UAVs (Collab Man). This shows the importance of knowing the
long-term plans of the agents rather than relying on general heuristics when
applying further optimisation in their behaviour. It also explains the lack of
improvement when the path optimisation is used in other approaches. The
difference in the rotary-wing victim search length for the baseline and the
tree-search with hindsight optimisation approaches (MCTS Grad vs MCTS
HOP) emphasizes the main difference between the gradient descent and HOP
behaviour. Specifically, when using gradient descent, victim search tasks are
immediately scheduled as mobile phones are observed, while during HOP
victim search UAVs wait at high mobile phone density locations until they
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Figure 4: Completion rate of finding victims over time. Bars show the progress after 24
minutes.

are scanned. Having waited, there are more observations made about other
mobile phones that decreases the time the rotary-wings need to find a victim
at these locations, but waiting imposes a large delay causing a low overall
performance.

The progress of the automated victim search can be observed over time
in Figure 4. The completion ratio shows the ratio between found and not
yet found victims. The bar graph shows a cross section after 24 minutes,
the maximal flight time of a popular professional small rotary-wing camera
drone (DJI Phantom 3 Professional). If the victim search would stop after
this time, the collaborative approach without path optimisation (Collab)
would find the most victims, 101 on average. The fact that only half of
the victims are found at this point shows that the long battery life of the
platforms is crucial for a successful application of automated victim search
in a similar setting.

In more detail, the progress using tree search based mobile phone scanning
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(MCTS Grad and MCTS HOP) shows a significantly less steep completion
curve in the first 20 minutes due to the slower coverage of the area by mobile
phone scanning. It can also be seen that when using deterministic planning
for the rotary-wing planning (MCTS Grad, Indep Grad, Indep Grad Man)
the immediately scheduled tasks accelerate the initial progress in the first
500 seconds, but the progress rapidly falls back as this causes the UAVs to
move to the same regions that is suboptimal for covering all areas. The
progress graph also shows the differences between the joint planning with
and without the fixed-wing path optimisation (Collab and Collab Man). In
particular, we see the path optimisation will slightly delay the mobile phone
scanning process in order to make critical mobile phone locations more accu-
rate. In line with this, the progress has an approximate 2 minutes delay at
t=1000 s. However, after that the completion stays steep for a longer time
due to the more accurate mobile phone locations; the completion is 3.7%
higher (about 7 more victims found) at t=3000 s.

9. Conclusions and future work

Challenging planning problems are often simplified with relaxed constraints
in order to apply complex algorithms that optimise system performance.
Such simplifications are often necessary to avoid an optimal or near-optimal
solution being intractable. These simplifications may include replacing direct
dependencies of actions with general goals or applying the same constraints
to a group of actions. Specifically, when multiple actions create a workflow
processes, this would mean optimising each stage independently in order
to optimise the whole process. However, there are many problems where
the dependencies between the individual actions are very strong, which in
turn, requires a specific sequence to reach a goal. These problems can be
dealt with by using temporal planning, that searches for beneficial action
sequences given a general problem description. Although, it is often difficult
to provide a problem description in a realistic setting with such approaches.
This is especially true in a multi-robot setting, where there is significant
uncertainty present.

Against this background, in this paper we show a different approach.
We make compromises in the individual solution quality, but make use of
the complex connections in the uncertain planning problem. As a result,
we construct an online planner that manages to improve the performance
compared to the state-of-the-art.
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Our approach is presented through an application in disaster response, in
an automated victim search system. The automated victim search consists
of scanning an area in order to locate mobile phones and then finding victims
near the mobile phone locations with two specialised groups of robots (UAVs)
for each tasks. The complex planning problem is finding a joint solution for
the multi-robot search problem (mobile phone scanning) and for the multi-
robot task allocation problem (finding victims), while taking the connection
of these activities into account. Moreover, the connection lies within the
unexplored mobile phone locations, therefore has a significant uncertainty.

To this end, we present an online planner that creates a joint plan for both
groups of robots, while planning under uncertainty for the victim finding
robots. We show the benefits of full-horizon planning, so long-term depen-
dencies can be taken into account. Moreover, we combine long-term planning
with a short-term path planning approach that further improves the perfor-
mance, but only when the robots are aware of the plans of the other robots.
This shows another advantage of long-term joint planning, when it is possible
to produce local changes and see their effect on a mission level.

Although we illustrated our approach in a particular scenario, it is a gen-
eral approach. The joint planner has been applied in different SAR problem
settings in our previous work in small-scale SAR settings17 and limited de-
tail simulation of an imagery-based victim search scenario [24]. It could also
easily be applied in other domains, such as wildlife reservation [56] or criti-
cal power line inspection and recovery [57]. In both settings multiple actors
can be present at a time critical and uncertain scenario (e.g. surveillance or
inspection UAVs, law enforcement or repair vehicles). The dependencies be-
tween the actions of these actors can be taken into account using uncertain
joint planning of their actions improving their response time, thus the success
rate of anti-poaching or decreasing system downtime.

In this work, we evaluated the performance of the planner in a highly
realistic simulation system. We apply an accurate sensor model of mobile
phone signal strength, simulate the control of the UAVs resulting in realistic
flight paths, and also simulate the synchronisation and communication be-
tween the UAVs. The resulting system provides a portable, easy to deploy
solution for embedded hardware on physical robots. The simulation is based

17SAR of a small sector (0.9 km2) after the Haiti earthquake and after an industrial
spill in Hungary.
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on the Haiti earthquake in 2010. We use high resolution disaster assess-
ment data to produce realistic victim locations. During the evaluation, our
optimised joint planning approach finds victims 25% faster than the state-
of-the-art approach. The software system where the evaluation has been run
is released18.

The communication requirements are discussed in Section 6. While col-
laboration works best with perfect global communication, the collaboration
can be maintained with missing messages or communication links as well.
The required bandwidth is reasonable and can be reduced to one tenth using
message optimisation.

Besides the optimisation of communication data, there are many aspects
of this work that needs further development before a physical deployment
becomes possible. The most important is the mobile phone sensing and
communication equipment. There are prototypes present for this purpose
[10, 11], but these are far from robust products that can easily fit as an UAV
payload. Bringing this technology closer to deployment in disaster settings
would contribute into an extremely useful tool in disaster response.

As mentioned in Section 8, the computation time of the joint planning is
sufficiently low in the presented setting, but could reach the computational
budget in other settings. To address this shortcoming, we plan to investigate
online learning techniques to improve plans using the experience from previ-
ously produced plans as future work. The current planner establishes a new
plan discarding the information from previous planning steps. This provides
high flexibility when the information of the disaster site suddenly changes,
but results in redundant computation when such change does not happen.
Using online learning, important information can be extracted from earlier
plans to create higher quality plans in later planning steps. This allows the
planner to cope with complex problems more efficiently (e.g. problems with
more tasks, more kinds of dependencies, or more types of actions or actors).
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Appendix A. Decision making to determine the optimal motion di-
rection of victim search robots given hindsight plans

In this section, the HOP solution aggregation method is detailed that is ap-
plied in Algorithm 1 in Section 4.3. The problem is directing victim search
robots while mobile phones (and therefore victim search tasks) are not ex-
plored yet – the scanning process is ongoing – in order to maximise the overall
utility by finding victims sooner.

In this case, the optimisation should rely on the distribution of the pos-
sible mobile phone locations. As detailed in Section 4.3, the distribution is
sampled and several solutions are given using HOP. Consequently, the ag-
gregation problem is to find a movement direction for each robot given the
hindsight schedules for each sample of the tasks in order to maximise the
expected utility gain of the rescue agents.

At first, we solve the problem for a single step look ahead planning prob-
lem, then we extend the solution to multiple step look ahead planning.

Theorem 1. The optimal aggregated direction for a robot to maximise the
utility of executing the closest task from a random distribution is the aver-
age of the directions of closest tasks from independent samples of the task
distribution.

Proof. First the proof is shown for an example of two tasks. In Fig-
ure A.5, we can see an agent choosing a direction for proactive movement to
execute one of the two possible tasks appearing with p1 and p2 independent
probability respectively. The distance from the tasks are d1 and d2 respec-
tively, d1 < d2. The unit vector to task 1, task 2 and the chosen direction
of proactive movement is v1,v2 and va respectively. We assume a linearly
decreasing utility function by the distance from the task, U = U0 − d ∗ λ (in
line with Equation 1). The optimal va vector can be derived as follows:

agent

d1
d2

p1 p2

v1 v2

task 1 task 2

vva

Figure A.5: Simple proactive movement example.
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E[U ] = p1 ∗ (U0 − d1 ∗ λ) + p2 ∗ (1− p1) ∗ (U0 − d2 ∗ λ), (A.1)

∂E[U ]

∂v
= λ ∗

(
−p1 ∗

∂d1
∂v
− p2 ∗ (1− p1) ∗

∂d2
∂v

)
, (A.2)

∂E[U ]

∂v
∗ 1

λ
= −p1 ∗

∂|d1v1 − ∂v|
∂v

− p2 ∗ (1− p1) ∗
∂|d2v2 − ∂v|

∂v
. (A.3)

Now, as the length of ∂v converges to zero, we can make the following ap-
proximation:

∂|vn − ∂v| ≈ −
vn

|vn|
· ∂v, (A.4)

that is the length of the parallel component of ∂v with vn. Therefore,

∂E[U ]

∂v
∗ 1

λ
= p1 ∗

v1 · ∂v
∂v

+ p2 ∗ (1− p1) ∗
v2 · ∂v
∂v

, (A.5)

∂E[U ]

∂v
∗ 1

λ
=

(p1v1 + p2 ∗ (1− p1)v2) · ∂v
∂v

, (A.6)

|∂v| = ∂d, ∂v = va∂d, (A.7)

∂E[U ]

va∂d
∗ 1

λ
=

(p1v1 + p2 ∗ (1− p1)v2) · va∂d

va∂d
, (A.8)

∂E[U ]

∂d
=

(p1v1 + p2 ∗ (1− p1)v2) · va

λ
. (A.9)

Now, to maximize the expected utility gain, we have to choose a direction
of movement va that makes ∂E[U ]

∂d
the highest, that will point to the same

direction as p1v1 + p2 ∗ (1− p1)v2, as it will maximize the scalar product in
Equation A.9:

arg max
va

∂E[U ]

∂d
=

p1v1 + p2 ∗ (1− p1)v2

|p1v1 + p2 ∗ (1− p1)v2|
. (A.10)

If we take infinite number of samples of the possible outcomes, task 1
will be chosen with a ration of p1, and task 2 will be chosen with a ratio of
p2 ∗(1−p1), and no tasks will be in the (1−p1)∗(1−p2) ratio of the samples.
The average direction vector in this example will be identical to the optimal
direction in Equation A.10. The average of the vectors similarly lead to the
optimal proactive movement direction for more tasks or agents when only
one task can be performed by an agent.

Theorem 2. The optimal aggregated direction for a robot to maximise the
utility of a series of tasks is the weighted average of initial directions from
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hindsight optimisation solutions for independent samples drawn from the dis-
tribution. Using weight values that are the number of non-delayed tasks in
the corresponding schedule.

Proof. The method is very similar to the previous case (Theorem 1).
The difference is that not only one task utility is decreasing as the first task
is delayed, but later tasks in the schedule as well. Of course, if a task has a
temporal constraint causes it to start later than when the robot arrives there,
there is no extra delay caused by arriving a little later. For this reason, critical
tasks are distinguished: a critical (non-delayed) task has no delay from time
constraints compared to the corresponding schedule (AP (τ, s) > cstr(τ) in
Equation 6). Time constraints can be imposed from the scan plan as detailed
in Section 4.6. Because the delay in all the critical tasks in a schedule is the
same as the delay in the first task, Equation A.5 changes as follows:

∂E[U ]

∂v
∗ 1

λ
=
∑
i

pi ∗ ci
vi · ∂v
∂v

. (A.11)

Here the sum is over all possible task outcomes. pi, ci and vi stands for
the chance of the ith possibility, the number of critical task for the solution
schedule, and the direction vector of the first task of the schedule. This will
change the average direction in Equation A.10 to a weighted average with
the weighting factors of the number of critical tasks for each schedule:

arg max
va

∂E[U ]

∂d
=

∑
i picivi

|
∑

i picivi|
. (A.12)
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