Skip to main content Accessibility help
×
  • Cited by 381
Publisher:
Cambridge University Press
Online publication date:
July 2014
Print publication year:
2014
Online ISBN:
9781139088510

Book description

The growth of social media over the last decade has revolutionized the way individuals interact and industries conduct business. Individuals produce data at an unprecedented rate by interacting, sharing, and consuming content through social media. Understanding and processing this new type of data to glean actionable patterns presents challenges and opportunities for interdisciplinary research, novel algorithms and tool development. Social Media Mining integrates social media, social network analysis, and data mining to provide a coherent platform to understand the basics and potentials of social media mining. It introduces the unique problems arising from social media data and presents fundamental concepts, emerging issues, and effective algorithms for network analysis and data mining. Suitable for use in advanced undergraduate and beginning graduate courses as well as professional short courses, the text contains exercises of different degrees of difficulty that improve understanding and help apply concepts, principles and methods for social media mining.

Reviews

'This is an exceptionally well-constructed book on social media that will be useful to academia and industry alike. The book covers the entire area of social network analysis in a comprehensive and understandable way.'

Charu Aggarwal - IBM T. J. Watson Research Center

'This is a delightful exploration of a multidisciplinary field in its simple and straightforward style. Social Media Mining introduces and connects underlying concepts with clarity and enables you to explore this amazing field further with confidence.'

Philip Yu - University of Illinois, Chicago

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Abbasi, Mohammad-Ali, Chai, Sun-Ki, Liu, Huan, and Sagoo, Kiran. 2012. Real-World behavior analysis through a social media lens. In: Social computing, behavioral-cultural modeling and prediction Google Scholar. Springer, pp. 18–26.
Abello, J., Resende, M., and Sudarsky, S. 2002. Massive quasi-clique detection. LATIN 2002: Theoretical Informatics Google Scholar.
Adamic, L.A., and Adar, E. 2003. Friends and neighbors on the web. Social networks, 25 CrossRef | Google Scholar(3).
Abrahamson, E. and Rosenkopf, L. 1993. Institutional and competitive bandwagons: Using mathematical modeling as a tool to explore innovation diffusion. Academy of Management Review Google Scholar, JSTOR, 487–517.
Adomavicius, Gediminas, and Tuzhilin, Alexander. 2005. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17 CrossRef | Google Scholar(6), 734–749.
Agarwal, N., Liu, H., Tang, L., and Yu, P.S. 2008. Identifying the influential bloggers in a community. In: Proceedings of the International Conference on Web Search and Web Data Mining Google Scholar. ACM.
Ahuja, R.K., Magnanti, T.L., Orlin, J.B., and Weihe, K. 1993. Network flows: theory, algorithms and applications. Prentice-Hall, 41 Google Scholar(3).
Albert, R., and Barabasi, A.L., 2000. Topology of evolving networks: local events and universality. Physical review letters, 85 CrossRef | Google Scholar | PubMed(24).
Al Hasan, Mohammad, Chaoji, Vineet, Salem, Saeed, and Zaki, Mohammed. 2006. Link prediction using supervised learning. In: SDM'06: Workshop on Link Analysis, Counter-terrorism and Security Google Scholar.
Anagnostopoulos, A., Kumar, R., and Mahdian, M. 2008. Influence and correlation in social networks. In: Proceedings of the 14th ACMSIGKDD international conference on Knowledge Discovery and Data ining Google Scholar. ACM.
Anderson, L.R., and Holt, C.A., 1996. Classroom games: information cascades. Journal of Economic Perspectives, 10 CrossRef | Google Scholar(4).
Anderson, L.R., and Holt, C.A. 1997. Information cascades in the laboratory. American Economic Review Google Scholar.
Anderson, R.M., and May, R.M.Infectious diseases ofhumans: dynamics and control Google Scholar. Oxford University Press.
Ankerst, M., Breunig, M.M., Kriegel, H.P., and Sander, J. 1999. OPTICS: ordering points to identify the clustering structure. Proceedings of the 1999 ACM SIGMOD international conference on anagement of Data Google Scholar.
Aral, S., Muchnik, L., and Sundararajan, A. 2009. Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proceedings of the National Academy of Sciences, 106 CrossRef | Google Scholar | PubMed(51).
Arguello, Jaime, Elsas, Jonathan, Callan, Jamie, and Carbonell, Jaime. 2008. Document representation and query expansion models for blog recommendation. In: Proceedings of the second international conference on Weblogs and Social edia (ICWSM) Google Scholar.
Asch, S.E. 1956. Studies of independence and conformity: I. A minority of one against a unanimous majority. Psychological Monographs: General and Applied, 70 CrossRef | Google Scholar(9).
Asur, Sitaram, and Huberman, Bernardo A. 2010. Predicting the future with social media. IEEE international conference on Web Intelligence and Intelligent Agent Technology, 1 Google Scholar: 492–499. IEEE.
Backstrom, L., Huttenlocher, D., Kleinberg, J.M., and Lan, X. 2006. Group formation in large social networks: membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge Discovery and Data Mining Google Scholar. ACM.
Backstrom, L., Sun, E., and Marlow, C. 2010. Find me if you can: improving geographical prediction with social and spatial proximity. In: Proceedings of the 19th international conference on the World Wide Web Google Scholar. ACM, pp. 61–70.
Bailey, N.T.J., 1975. The mathematical theory of infectious diseases and its applications Google Scholar. Charles Griffin & Company.
Bakshy, E., Hofman, J.M., Mason, W.A., and Watts, D.J. 2001. Everyone's an influencer: quantifying influence on Twitter. In: Proceedings of the fourth ACM international conference on Web Search and Data Mining Google Scholar. ACM.
Banerjee, A.V 1992. A simple model of herd behavior. The Quarterly Journal of Economics, 107 CrossRef | Google Scholar(3).
Barabasi, A.L., and Albert, R. 1999. Emergence of scaling in random networks. Science, 286 Google Scholar | PubMed(5439).
Barbier, Geoffrey, Zafarani, Reza, Gao, Huiji, Fung, Gabriel, and Liu, Huan. 2012. Maximizing benefits from crowdsourced data. Computational and Mathematical Organization Theory, 18 CrossRef | Google Scholar(3), 257–279.
Barbier, Geoffrey, Feng, Zhuo, Gundecha, Pritam, and Liu, Huan. 2013. Provenance data in social media Google Scholar. Morgan & Claypool Publishers.
Barnes, S.J., and Scornavacca, E. 2004. Mobile marketing: the role of permission and acceptance. International Journal of Mobile Communications, 2 CrossRef | Google Scholar(2), 128–139.
Barrat, Alain, Barthelemy, Marc, and Vespignani, Alessandro. 2008. Dynamical processes on complex networks. Vol. 1 CrossRef | Google Scholar. Cambridge University Press.
Barwise, P., and Strong, C. 2002. Permission-based mobile advertising. Journal of interactive Marketing, 16 CrossRef | Google Scholar(1), 14–24.
Bass, F. 1969. A new product growth model for product diffusion. Management Science, 15 CrossRef | Google Scholar, 215–227.
Bell, W.G. 1995. The Great Plague in London in 1665. Bracken Books Google Scholar.
Bellma, R. 1956. On a routing problem. Notes, 16 Google Scholar(1).
Ben-Akiva, M., Bierlaire, M., Koutsopoulos, H., and Mishalani, R. 1998. DynaMIT: a simulation-based system for traffic prediction. In: DACCORS Short Term Forecasting Workshop, The Netherlands Google Scholar.
Berger, E. 2001. Dynamic monopolies of constant size. Journal of Combinatorial Theory, Series B, 83 Google Scholar(2).
Berkhin, P. 2006. A survey of clustering data mining techniques. Grouping Multidimensional Data Google Scholar.
Bernard, H. Russell. 2012. Social research methods: qualitative and quantitative approaches Google Scholar. Sage.
Bikhchandani, S., and Sharma, S. 2001. Herd behavior in financial markets. IMF Staff Papers Google Scholar.
Bikhchandani, S., Hirshleifer, D., and Welch, I. 1992. A theory of fads, fashion, custom, and cultural change as informational cascades. Journal of Political Economy Google Scholar, 5.
Bikhchandani, S., Hirshleifer, D., and Welch, I. 1998. Learning from the behavior of others: conformity, fads, and informational cascades. Journal of Economic Perspectives, 12 CrossRef | Google Scholar(3).
Bishop, C.M. 1995. Neural networks for pattern recognition Google Scholar. Oxford University Press.
Bishop, C.M. 2006. Pattern recognition and machine learning. Vol. 4 Google Scholar. Springer.
Bollobas, B. 2001. Random graphs. Vol. 73 CrossRef | Google Scholar. Cambridge University Press.
Bonabeau, E., Dorigo, M., and Theraulaz, G. 1999. Swarm intelligence: from natural to artificial systems Google Scholar. Oxford University Press.
Bondy, J.A., and Murty, U.S.R., 1976. Graph theory with applications. Vol. 290 CrossRef | Google Scholar. MacMillan, 5.
Boyd, Stephen Poythress, and Vandenberghe, Lieven. 2004. Convex optimization CrossRef | Google Scholar. Cambridge University Press.
Brandes, Ulrik. 2001. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25 CrossRef | Google Scholar(2), 163–177.
Broder, Andrei, Kumar, Ravi, Maghoul, Farzin, Raghavan, Prabhakar, Rajagopalan, Sridhar, Stata, Raymie, Tomkins, Andrew, and Wiener, Janet. 2000. Graph structure in the web. Computer Networks, 33 CrossRef | Google Scholar(1), 309–320.
Bryman, Alan. 2012. Social research methods Google Scholar. Oxford University Press.
Burke, Robin. 2002. Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12 CrossRef | Google Scholar(4), 331–370.
Candan K., Selcuk, and Sapino, Maria Luisa. 2010. Data management for multimedia retrieval CrossRef | Google Scholar. Cambridge University Press.
Cha, M., Haddadi, H., Benevenuto, F., and Gummadi, K.P. 2010. Measuring user influence in twitter: the million follower fallacy. In: AAAI Conference on Weblogs and Social Media, 14 Google Scholar, 8.
Chakrabarti, Soumen. 2003. Mining the Web: discovering knowledge from hypertext data Google Scholar. Morgan Kaufmann.
Chen, Jilin, Geyer, Werner, Dugan, Casey, Muller, Michael, and Guy, Ido. 2009. Make new friends, but keep the old: recommending people on social networking sites. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems Google Scholar. ACM, pp. 201–210.
Chinese, S., et al. 2004. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science, 303(5664), 1666 Google Scholar.
Christakis, Nicholas A., and James H., Fowler. 2009. Connected: The surprising power of our social networks and how they shape our lives Google Scholar. Hachette Digital, Inc.
Christakis, N.A., and Fowler, J.H. 2007. The spread of obesity in a large social network over 32 years. New England Journal of Medicine, 357 CrossRef | Google Scholar(4), 370–379.
Chung, F.R.K., 1996. Spectral graph theory. Journal of the American Mathematical Society CrossRef | Google Scholar.
Cialdini, R. B., and M. R., Trost. 1998. Social influence: Social norms, conformity and compliance. In: The handbook ofsocial psychology. 4th ed. Vol. 2 Google Scholar, McGraw-Hill, pp. 151–192.
Clauset, Aaron, Shalizi, Cosma Rohilla, and Newman, Mark EJ. 2009. Power-law distributions in empirical data. SIAM review, 51 CrossRef | Google Scholar(4): 661–703.
Coleman, J.S., Katz, E., Menzel, H. 1966. Medical innovation: a diffusion study Google Scholar. Bobbs-Merrill.
Cont, R., and Bouchaud, J.P. 2000. Herd behavior and aggregate fluctuations in financial markets. Macroeconomic Dynamics, 4 CrossRef | Google Scholar(02).
Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., and Stein, Clifford. 2009. Introduction to algorithms Google Scholar. MIT Press.
Currarini, S., Jackson, M.O., and Pin, P. 2009. An Economic Model of Friendship: Homophily, Minorities, and Segregation. Econometrica, 77 Google Scholar(4), 1003–1045.
Das, Abhinandan S., Datar, Mayur, Garg, Ashutosh, and Rajaram, Shyam. 2007. Google news personalization: scalable online collaborative filtering. In: Proceedings of the 16th international conference on the World Wide Web Google Scholar. ACM, pp. 271–280.
Dash, Manoranjan, and Liu, Huan. 1997. Feature selection for classification. Intelligent Data Analysis, 1 CrossRef | Google Scholar(3), 131–156.
Dash, Manoranjan, and Liu, Huan. 2000. Feature selectionforclustering. In: Knowledge Discovery and Data Mining. Current Issues and New Applications Google Scholar. Springer, pp. 110–121.
Davidson, James, Liebald, Benjamin, Liu, Junning, Nandy, Palash, Van Vleet, Taylor, Gargi, Ullas, Gupta, Sujoy, He, Yu, Lambert, Mike, Livingston, Blake, et al. 2010. The YouTube video recommendation system. In: Proceedings of the fourth ACM conference on Recommender Systems Google Scholar. ACM, pp. 293–296.
Davies, D.L., and Bouldin, D.W. 1979. A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence Google Scholar.
De, I., Pool, S., and Kochen, M. 1978. Contacts and influence. Social Networks, 1 Google Scholar, 148.
de Solla Price, D.J. 1965. Networks of scientific papers. Science, 149 CrossRef | Google Scholar(3683).
Des Jarlais, D.C., Friedman, S.R., Sotheran, J.L., Wenston, J., Marmor, M.Yancovitz, S.R., Frank, B., Beatrice, S., and Mildvan, D. 1994. Continuity and change within an HIV epidemic. JAMA, 271 Google Scholar(2).
Devenow, A., and Welch, I. 1996. Rational herding in financial economics. European Economic Review, 40 CrossRef | Google Scholar(3).
Dia, H. 2001. An object-oriented neural network approach to short-term traffic forecasting. European Journal of Operational Research, 131 CrossRef | Google Scholar(2), 253–261.
Diestel, R. 2005. Graph theory. 2005. Graduate Texts in Math Google Scholar.
Dietz, K. 1967. Epidemics and rumours: a survey. Journal of the Royal Statistical Society CrossRef | Google Scholar. Series A (General).
Dijkstra, E.W. 1959. A note on two problems in connexion with graphs. Numerische Mathematik, 1 CrossRef | Google Scholar(1).
Dodds, P.S., and Watts, D.J. 2004. Universal behavior in a generalized model of contagion. Physical Review Letters, 92 CrossRef | Google Scholar(21).
Drehmann, M., Oechssler, J., and Roider, A. 2005. Herding and contrarian behavior in financial markets – an internet experiment. American Economic Review Google Scholar, 95.
Duda, Richard O., Hart, Peter E., and Stork, David G. 2012. Pattern classification Google Scholar. Wiley-interscience.
Dunn, J.C. 1974. Well-separated clusters and optimal fuzzy partitions. Journal of Cybernetics, 4 Google Scholar(1).
Dye, C., and Gay, N. 2003. Modeling the SARS epidemic. Science, 300 CrossRef | Google Scholar | PubMed(5627).
Easley, D., and Kleinberg, J.M. 2010. Networks, crowds, and markets CrossRef | Google Scholar. Cambridge Univesity Press.
Eberhart, R.C., Shi, Y., and Kennedy, J. 2001. Swarm intelligence Google Scholar. Morgan Kaufmann.
Edmonds, J., and Karp, R.M. 1972. Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM (JACM), 19 CrossRef | Google Scholar(2).
Ellison, Nicole B., et al. 2007. Social network sites: definition, history, and scholarship. Journal of Computer-Mediated Communication, 13 Google Scholar(1), 210–230.
Engelbrecht, A.P. 2005. Fundamentals of computational swarm intelligence. Recherche, 67 Google Scholar(2).
Erdos, P., and Rényi, A. 1960. On the evolution of random graphs Google Scholar. Akademie Kiado.
Erdos, P., and Rényi, A. 1961. On the strength of connectedness of a random graph. Acta Mathematica Hungarica, 12 Google Scholar(1).
Erdos, P., and Rényi, A. 1959. On random graphs. Publicationes Mathematicae Debrecen, 6 Google Scholar, 290–297.
Ester, M., Kriegel, H.P., Sander, J., and Xu, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the second international conference on Knowledge Discovery and Data Mining Google Scholar, AAAI Press, 226–231.
Faloutsos, M., Faloutsos, P., and Faloutsos, C. 1999. On power-law relationships of the internet topology. In: ACMSIGCOMM Computer Communication Review Google Scholar, 29.
Fisher, D. 1987. Improving inference through conceptual clustering. Proceedings of the 1987 AAAI conference Google Scholar, 461–465.
Floyd, R.W. 1962. Algorithm 97: shortest path. Communications of the ACM, 5 CrossRef | Google Scholar(6).
Ford, L.R., and Fulkerson, D.R. 1956. Maximal flow through a network. Canadian Journal of Mathematics, 8 CrossRef | Google Scholar(3), 399–404.
Fortunato, S. 2009. Community detection in graphs. Physics Reports, 486 Google Scholar(3-5).
Friedman, J., Hastie, T., and Tibshirani, R. 2009. The elements of statistical learning. Vol. 1 Google Scholar. Springer Series in Statistics.
Gale, D. 1996. What have we learned from social learning?European Economic Review, 40 CrossRef | Google Scholar(3).
Gao, Huiji, Wang, Xufei, Barbier, Geoffrey, and Liu, Huan. 2011a. Promoting coordination for disaster relief – from crowdsourcing to coordination. In: Social computing, behavioral-cultural modeling and prediction Google Scholar. Springer, pp. 197–204.
Gao, H., Barbier, G., and Goolsby, R. 2011b. Harnessing the Crowdsourcing Power of Social Media for Disaster Relief. Intelligent Systems, IEEE, 26 CrossRef | Google Scholar(3), 10–14.
Gao, H., Tang, J., and Liu, H. 2012a. Exploring Social-Historical Ties on Location-Based Social Networks. In: Proceedings of the sixth international conference on Weblogs and Social Media Google Scholar.
Gao, H., Tang, J., and Liu, H. 2012b. Mobile Location Prediction in Spatio-Temporal Context. Nokia Mobile Data Challenge Workshop Google Scholar.
Gao, Huiji, Tang, Jiliang, and Liu, Huan. 2012c. gSCorr: modeling geo-social correlations for new check-ins on location-based social networks. In: Proceedings of the 21st ACM international conference on Information and Knowledge Management Google Scholar. ACM, pp. 1582–1586.
Gibson, D., Kumar, R., and Tomkins, A. 2005. Discovering large dense subgraphs in massive graphs. In: Proceedings of the 31st international conference on Very Large Data Bases Google Scholar. VLDB Endowment.
Gilbert, E.N. 1959. Random graphs. Annals of Mathematical Statistics, 30 CrossRef | Google Scholar(4).
Girvan, M., and Newman, M.E.J., 2002. Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99 CrossRef | Google Scholar | PubMed(12).
Golbeck, Jennifer, and Hendler, James. 2006. Filmtrust: movie recommendations using trust in web-based social networks. In: Proceedings of the IEEE Consumer Communications and Networking Conference Google Scholar, 96.
Goldberg, A.V., and Tarjan, R.E. 1988. A new approach to the maximum-flow problem. Journal of the ACM (JACM), 35 CrossRef | Google Scholar(4).
Golub, B., and Jackson, M.O. 2010. Naive learning in social networks and the wisdom of crowds. American Economic Journal: Microeconomics, 2 Google Scholar(1).
Goodchild, M.F., and Glennon, J.A. 2010. Crowdsourcing geographic information for disaster response: a research frontier. International Journal of Digital Earth, 3 CrossRef | Google Scholar(3), 231–241.
Goodman, L., and Kruskal, W. 1954. Measures of associations for cross-validations. Journal of the Amerian Statistical Association, 49 Google Scholar, 732–764.
Goyal, A., Bonchi, F., and Lakshmanan, L.V.S., 2010. Learning influence probabilities in social networks. In: Proceedings of the Third ACM international conference on Web Search and Data Mining Google Scholar. ACM.
Granovetter, M. 1976. Threshold models of collective behavior. American Journal of Sociology Google Scholar.
Granovetter, M.S. 1983. The strength of weak ties. American Journal of Sociology Google Scholar, 1.
Gray, V. 2007. Innovation in the states: a diffusion study. American Political Science Review, 67 Google Scholar(4).
Griliches, Z. 2007. Hybrid corn: an exploration in the economics of technological change. Econometrica, Journal of the Econometric Society Google Scholar, 132.
Gruhl, D., Guha, R., Liben-Nowell, D., and Tomkins, A. 2004. Information diffusion through blogspace. In: Proceedings of the 13th international conference on the World Wide Web Google Scholar. ACM.
Guan, Y., Chen, H., Li, K.S., Riley, S., Leung, G.M., Webster, R., Peiris, J.S.M., and Yuen, K.Y. 2007. A model to control the epidemic of H5N1 influenza at the source. BMC Infectious Diseases, 7 CrossRef | Google Scholar | PubMed(1).
Gundecha, Pritam, and Liu, Huan. 2012. Mining Social Media: a Brief Introduction. Tutorials in Operations Research, 1 Google Scholar(4).
Gundecha, Pritam, Barbier, Geoffrey, and Liu, Huan. 2011. Exploiting Vulnerability to Secure User Privacy on a Social Networking Site. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge Discovery and Data Mining Google Scholar. KDD, pp. 511–519.
Guy, Ido, Zwerdling, Naama, Ronen, Inbal, Carmel, David, and Uziel, Erel. 2010. Social media recommendation based on people and tags. In: Proceedings of the 33rd international ACM SIGIR conference on Research and Development in Information Retrieval Google Scholar. ACM, pp. 194–201.
Guyon, Isabelle. 2006. Feature extraction: foundations and applications. Vol. 207 CrossRef | Google Scholar. Springer.
Hagerstrand, T., et al. 1967. Innovation diffusion as a spatial process Google Scholar. University of Chicago Press.
Hamblin, R.L., Jacobsen, R.B., and Miller, J.L.L., 1973. A mathematical theory of social change Google Scholar. Wiley.
Han, Jiawei, Kamber, Micheline, and Pei, Jian. 2006. Data mining: concepts and techniques Google Scholar. Morgan Kaufmann.
Handcock, M.S., Raftery, A.E., and Tantrum, J.M. 2007. Model-based clustering for social networks. Journal of the Royal Statistical Society: Series A (Statistics in Society), 170 Google Scholar(2).
Hart, P.E., Nilsson, N.J., and Raphael, B. 2003. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4 Google Scholar(2).
Haykin, Simon. 1994. Neural networks: a comprehensive foundation Google Scholar. Prentice Hall.
Hethcote, H.W. 1994. A thousand and one epidemic models. Lecture Notes in Biomath-ematics Google Scholar, Springer.
Hethcote, H.W. 2000. The mathematics of infectious diseases. SIAM Review Google Scholar, 42.
Hethcote, H.W., Stech, H.W., and van den Driessche, P. 1981. Periodicity and stability in epidemic models: a survey. In: Differential equations and applications in ecology, epidemics and population problems (S.N. Busenberg and K.L. Cooke, eds.) Google Scholar, 65–82.
Hirschman, E.C. 1980. Innovativeness, novelty seeking, and consumer creativity. Journal of Consumer Research Google Scholar, 7.
Hirshleifer, D. 1997. Informational cascades and social conventions Google Scholar. University of Michigan Business School Working Paper No. 9705-10.
Hoff, P.D., Raftery, A.E., and Handcock, M.S. 2002. Latent space approaches to social network analysis. Journal of the American Statistical Association, 97 CrossRef | Google Scholar(460).
Hopcroft, J., and Tarjan, R. 1971. Algorithm 447: efficient algorithms for graph manipulation. Communications of the ACM, 16 Google Scholar(6).
Hu, Xia, Tang, Jiliang, Gao, Huiji, and Liu, Huan. 2013a. Unsupervised Sentiment Analysis with Emotional Signals. In: Proceedings of the 22nd international conference on the World Wide Web Google Scholar. WWW'13. ACM.
Hu, Xia, Tang, Lei, Tang, Jiliang, and Liu, Huan. 2013b. Exploiting Social Relations for Sentiment Analysis in Microblogging. In: Proceedings of the sixth ACM international conference on Web Search and Data Mining Google Scholar.
Jaccard, P. 1901. Distribution de la Flore Alpine: dans le Bassin des dranses et dans quelques régions voisines Google Scholar. Rouge.
Jackson, M.O. 2010. Social and economic networks Google Scholar. Princeton University Press.
Jain, A.K., and Dubes, R.C. 1999. Algorithms for clustering data Google Scholar. Prentice-Hall.
Jain, A.K., Murty, M.N., and Flynn, P.J. 1999. Data clustering: areview. ACM Computing Surveys (CSUR), 31 CrossRef | Google Scholar(3).
Jameson, Anthony, and Smyth, Barry. 2007. Recommendation to groups. In: The adaptive web Google Scholar. Springer, pp. 596–627.
Jannach, Dietmar, Zanker, Markus, Felfernig, Alexander, and Friedrich, Gerhard. 2010. Recommender systems: an introduction CrossRef | Google Scholar. Cambridge University Press.
Jensen, T.R., and Toft, B. 1994. Graph coloring problems. Vol. 39 CrossRef | Google Scholar. Wiley-Interscience.
Kadushin, Charles. 2012. Understanding Social Networks: theories, concepts, and findings: theories, concepts, and findings Google Scholar. Oxford University Press.
Kaplan, Andreas M., and Haenlein, Michael. 2010. Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53 CrossRef | Google Scholar(1), 59–68.
Karinthy, F. 1929. Chains: Everythingis Different Google Scholar, Vintage Press.
Karypis, G., Han, E.H., and Kumar, V 1999. Chameleon: hierarchical clustering using dynamic modeling. Computer, 32 CrossRef | Google Scholar(8), 68–75.
Katz, E., and Lazarsfeld, P.F. 2005. Personal influence: the part played by people in the flow of mass communications Google Scholar. Transaction Publication.
Keeling, M.J., and Eames, K.T.D., 2005. Networks and epidemic models. Journal of the Royal Society Interface, 2 CrossRef | Google Scholar | PubMed(4).
Keller, E., and Berry, J. 2003. The influentials: One American in ten tells the other nine how to vote, where to eat, and what to buy Google Scholar. Free Press.
Kempe, D., Kleinberg, J.M., and Tardos, É. 2003. Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining Google Scholar. ACM.
Kennedy, J. 2006. Swarm intelligence. In: Handbook of Nature-Inspired and Innovative Computing Google Scholar.
Kermack, W.O., and McKendrick, A.G. 1932. Contributions to the mathematical theory of epidemics. II. The problem of endemicity. Proceedings of the Royal Society of London. Series A, 138 Google Scholar(834).
Kietzmann, Jan H., Hermkens, Kristopher, McCarthy, Ian P., and Silvestre, Bruno S. 2011. Social media? Get serious! Understanding the functional building blocks of social media. Business Horizons, 54 CrossRef | Google Scholar(3), 241–251.
Kleinberg, J.M. 1998. Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM), 46 Google Scholar(5).
Kleinberg, J.M. 2007. Challenges in mining social network data: processes, privacy, and paradoxes. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge Discovery and Data Mining Google Scholar. ACM, pp. 4–5.
Kleinberg, Jon, and Tardos, Éva. 2005. Algorithm Design Google Scholar. Addison Wesley.
Konstas, Ioannis, Stathopoulos, Vassilios, and Jose, Joemon M. 2009. On social networks and collaborative recommendation. In: Proceedings of the 32nd international ACM SIGIR conference on Research and Development in Information Retrieval Google Scholar. ACM, pp. 195–202.
Kosala, R., and Blockeel, H. 2000. Web mining research: a survey. ACM Sig kdd Explorations Newsletter, 2 Google Scholar(1).
Kossinets, G., and Watts, D.J. 2006. Empirical analysis of an evolving social network. Science, 311 CrossRef | Google Scholar | PubMed(5757).
Krapivsky, P.L., Redner, S., and Leyvraz, F. 2000. Connectivity of growing random networks. Physical Review Letters, 85 CrossRef | Google Scholar | PubMed(21).
Kruskal, J.B. 1956. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American athematical Society, 7 Google Scholar(1), 48–50.
Kumar, R., Novak, J., and Tomkins, A. 2010. Structure and evolution of online social networks. In: Link ining: odels, Algorithms, and Applications Google Scholar, Springer.
Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A. 1999. Trawling the Web for emerging cyber-communities. Computer Networks, 31 CrossRef | Google Scholar(11-16).
Kumar, S., Zafarani, R., and Liu, H. 2011. Understanding User Migration Patterns in Social Media. In: 25th AAAI Conference on Artificial Intelligence Google Scholar.
Kumar, Shamanth, Zafarani, Reza, and Liu, Huan. 2013. Whom Should I Follow? Identifying Relevant Users During Crises. In: Proceedings of the 24th ACM Conference on Hypertext and Social edia Google Scholar.
La Fond, T., and Neville, J. 2010. Randomization tests for distinguishing social influence and homophily effects. In: Proceedings of the 19th international conference on the World Wide Web Google Scholar. ACM.
Lancichinetti, A., and Fortunato, S. 2009. Community detection algorithms: a comparative analysis. Physical Review E, 80 CrossRef | Google Scholar | PubMed(5).
Langley, P. 1995. Elements of machine learning Google Scholar. Morgan Kaufmann.
Lawson, Charles L., and Hanson, Richard J. 1995. Solving least squares problems CrossRef | Google Scholar, 15. SIAM.
Leibenstein, H. 1950. Bandwagon, snob, and Veblen effects in the theory of consumers' demand. Quarterly Journal of Economics, 64 CrossRef | Google Scholar(2).
Leicht, E.A., Holme, P., and Newman, M.E.J., 2005. Vertex similarity in networks. Physical Review E, 73 Google Scholar(2).
Leskovec, J., Kleinberg, J.M., and Faloutsos, C. 2005. Graphs overtime: densification laws, shrinking diameters and possible explanations. In: Proceedings of the 11th AC SIGKDD international conference on Knowledge Discovery in Data ining Google Scholar. ACM.
Leskovec, J., Lang, K.J., and Mahoney, M. 2010. Empirical comparison of algorithms for network community detection. In: Proceedings of the 19th international conference on the World Wide Web Google Scholar. ACM.
Leskovec, J., McGlohon, M., Faloutsos, C., Glance, N., and Hurst, M. 2007. Cascading behavior in large blog graphs CrossRef | Google Scholar. Arxivpreprint arXiv:0704.2803.
Leskovec, Jure, Backstrom, Lars, and Kleinberg, Jon. 2009. Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th AC SIGKDD international conference on Knowledge Discovery and Data ining Google Scholar. ACM, pp. 497–506.
Lewis, T.G. 2009. Network Science: theory and Applications CrossRef | Google Scholar. Wiley.
Liben-Nowell, D., and Kleinberg, J.M. 2003. The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology, 58 Google Scholar(7).
Lietsala, Katri, and Sirkkunen, Esa. 2008. Social media. Introduction to the tools and processes of participatory economy Google Scholar, Tampere University.
Liu, B. 2007. Web data mining: exploring hyperlinks, contents, and usage data Google Scholar. Springer Verlag.
Liu, Huan, and Motoda, Hiroshi. 1998. Feature extraction, construction and selection: a data mining perspective CrossRef | Google Scholar. Springer.
Liu, Huan, and Yu, Lei. 2005. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17 Google Scholar(4), 491–502.
Liu, Jiahui, Dolan, Peter, and Pedersen, Elinl Ranby. 2010. Personalized news recommendation based on click behavior. In: Proceedings of the 15th international conference on Intelligent User Interfaces Google Scholar. ACM, pp. 31–40.
Lorrain, F., and White, H.C. 1971. Structural equivalence of individuals in social networks. Journal of Mathematical Sociology, 1 CrossRef | Google Scholar(1).
Lu, Linyuan, and Zhou, Tao. 2011. Link prediction in complex networks: a survey. Physica A: Statistical Mechanics and its Applications, 390 CrossRef | Google Scholar(6), 1150–1170.
Ma, Hao, Yang, Haixuan, Lyu, Michael R., and King, Irwin. 2008. Sorec: social recommendation using probabilistic matrix factorization. In: Proceedings of the 17th ACM conference on Information and Knowledge Management Google Scholar. ACM, pp. 931–940.
Ma, Hao, Lyu, Michael R., and King, Irwin. 2009. Learning to recommend with trust and distrust relationships. In: Proceedings of the third ACMconference on Recommender Systems Google Scholar. ACM, pp. 189–196.
Ma, Hao, Zhou, Dengyong, Liu, Chao, Lyu, Michael R., and King, Irwin. 2011. Rec-ommender systems with social regularization. In: Proceedings of the fourth ACM international conference on Web Search and Data Mining Google Scholar. ACM, pp. 287–296.
Macy, M.W. 1991. Chains of cooperation: threshold effects in collective action. American Sociological Review Google Scholar, 56.
Macy, M.W., and Willer, R. 2002. From factors to actors: computational sociology and agent-based modeling. Annual Review of Sociology Google Scholar, 28.
Mahajan, V. 1985. Models for innovation diffusion CrossRef | Google Scholar. Sage Publications.
Mahajan, V., and Muller, E. 1982. Innovative behavior and repeat purchase diffusion models. In: Proceedings of the American Marketing Educators Conference Google Scholar, 456, 460.
Mahajan, V., and Peterson, R.A. 1978. Innovation diffusion in a dynamic potential adopter population. Management Science Google Scholar, 24.
Mansfield, E. 1961. Technical change and the rate of imitation. Econometrica: Journal of the Econometric Society Google Scholar, 29.
Martino, J.P. 1983. Technological forecasting for decision making Google Scholar. McGraw-Hill.
Massa, Paolo, and Avesani, Paolo. 2004. Trust-aware collaborative filtering for recom-mender systems. In: On the move to meaningful internet systems 2004: CoopIS, DOA, and ODBASE Google Scholar. Springer, pp. 492–508.
McKay, B.D. 1980. Practical Graph Isomorphism. In: Proceedings of the 10th Manitoba Conference on Numerical Mathematics and Computing, October 1-4, 1980, vol.1 Google Scholar. Utilitas Mathematica.
McPherson, M., Smith-Lovin, L., and Cook, J.M. 2001. Birds of a feather: homophily in social networks. Annual Review of Sociology Google Scholar, 27.
Midgley, D.F., and Dowling, G.R. 1978. Innovativeness: the concept and its measurement. Journal of Consumer Research Google Scholar, 4.
Milgram, S. 2009. Obedience to authority: an experimental view Google Scholar. Harper Perennial Modern Classics.
Milgram, S., Bickman, L., and Berkowitz, L. 1969. Note on the drawing power of crowds of different size. Journal of Personality and Social Psychology, 13 CrossRef | Google Scholar(2).
Milligan, G.W., and Cooper, M.C. 1985. An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50 CrossRef | Google Scholar(2).
Mirkin, B.G. 2005. Clustering for data mining: a data recovery approach CrossRef | Google Scholar. Chapman & Hall/CRC.
Mislove, Alan, Marcon, Massimiliano, Gummadi, Krishna P., Druschel, Peter, and Bhattacharjee, Bobby. 2007. Measurement and analysis of online social networks. In: Proceedings of the seventh ACM SIGCOMM conference on Internet Measurement Google Scholar. ACM, pp. 29–42.
Mitchell, T.M. 1997. Machine learning Google Scholar. WCB.
MacGrawHill.Monreale, A., Pinelli, F., Trasarti, R., and Giannotti, F. 2009. WhereNext: a location predictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge Discovery and Data Mining Google Scholar. ACM, pp. 637–646.
Moore, C., and Newman, M.E.J., 1999. Epidemics and percolation in small-world networks. Physical Review E, 61 Google Scholar(5).
Morris, S. 2000. Contagion. Review of Economic Studies, 67 CrossRef | Google Scholar(1).
Morstatter, Fred, Pfeffer, Jurgen, Liu, Huan, and Carley, Kathleen M. 2013. Is the sample good enough? Comparing data from Twitter's streaming API with Twitter's firehose. Proceedings of ICWSM Google Scholar.
Motwani, R., and Raghavan, P. 1995. Randomized algorithms CrossRef | Google Scholar. Chapman & Hall/CRC.
Myung, I.J. 2003. Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47 CrossRef | Google Scholar(1), 90–100.
Nelson, M.I., and Holmes, E.C. 2007. The evolution of epidemic influenza. Nature Reviews Genetics, 8 CrossRef | Google Scholar | PubMed(3).
Nemhauser, George L., and Wolsey, Laurence A. 1988. Integer and combinatorial optimization. Vol. 18 Google Scholar. Wiley.
Neter, John, Wasserman, William, Kutner, Michael H., et al. 1996. Applied linear statistical models. Vol.4 Google Scholar. Irwin.
Newman, M.E.J., 2002a. Mixing patterns in networks. Physical Review E, 67 Google Scholar(2).
Newman, M.E.J., 2002b. Random graphs as models of networks. In: Handbook of graphs and networks Google Scholar, Wiley.
Newman, M.E.J., 2006. Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103 CrossRef | Google Scholar | PubMed(23).
Newman, M.E.J., 2010. Networks: an introduction CrossRef | Google Scholar. Oxford University Press.
Newman, M.E.J., and Girvan, M. 2003. Mixing patterns and community structure in networks. Statistical Mechanics of Complex Networks Google Scholar, 625.
Newman, M.E.J., Forrest, S., and Balthrop, J. 2002. Email networks and the spread of computer viruses. Physical Review E, 66 CrossRef | Google Scholar | PubMed(3).
Newman, M.E.J., Watts, D.J., and Strogatz, S.H. 2002. Random graph models of social networks. Proceedings of the National Academy ofSciences Google Scholar, 99(Suppl. 1).
Newman, M.E.J., Strogatz, S.H., and Watts, D.J. 2000. Random graphs with arbitrary degree distributions and their applications. Physical Review E Google Scholar, 64.
Newman, M.E.J., Barabasi, A.L., and Watts, D.J. 2006. The structure and dynamics of networks Google Scholar. Princeton University Press.
Ng, R.T., and Han, J. 1994. Efficient and Effective Clustering Methods for Spatial Data Mining. Proceedings of the 20th international conference on Very Large Data Bases Google Scholar, 144–155.
Nocedal, Jorge, and Wright, S. 2006. Numerical optimization, series in operations research and financial engineering Google Scholar. Springer.
Nohl, J., Clarke, C.H., et al. 2006. The Black Death. A Chronicle of the Plague Google Scholar. Westholme.
O'Connor, , Brendan, Balasubramanyan, Ramnath, Routledge, Bryan R., and Smith, Noah A. 2010. From tweets to polls: linking text sentiment to public opinion time series. In: Proceedings of the international AAAI conference on Weblogs and Social Media Google Scholar, pp. 122–129.
O'Donovan, John, and Smyth, Barry. 2005. Trust in recommender systems. In: Proceedings of the 10th international conference on Intelligent User Interfaces Google Scholar. ACM, pp. 167–174.
Onnela, J.P., and Reed-Tsochas, F. 2010. Spontaneous emergence of social influence in online systems. Proceedings of the National Academy of Sciences, 107 Google Scholar(43).
Page, L., Brin, S., Motwani, R., and Winograd, T. 1999. The Page Rankcitation ranking: bringing order to the web Google Scholar, Stanford.
Palla, G., Derenyi, I., Farkas, I., and Vicsek, T. 2005. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435 CrossRef | Google Scholar | PubMed (7043).
Palla, Gergely, Barabási, Albert-Laszlo, and Vicsek, Tamas. 2007. Quantifying social group evolution. Nature, 446 CrossRef | Google Scholar | PubMed(7136), 664–667.
Pang, Bo, and Lee, Lillian. 2008. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2 CrossRef | Google Scholar(1-2), 1–135.
Papadimitriou, Christos H., and Steiglitz, Kenneth. 1998. Combinatorial optimization: algorithms and complexity Google Scholar. Courier Dover Publications.
Pastor-Satorras, R., and Vespignani, A. 2001. Epidemic spreading in scale-free networks. Physical Review Letters, 86 CrossRef | Google Scholar | PubMed(14).
Patterson, K.B., and Runge, T. 2002. Smallpox and the Native American. American Journal of the Medical Sciences, 323 CrossRef | Google Scholar | PubMed(4), 216.
Pattillo, J., Youssef, N., and Butenko, S. 2012. Clique Relaxation Models in Social Network Analysis. In: Handbook of Optimization in Complex Networks Google Scholar, Springer.
Pazzani, Michael J, and Billsus, Daniel. 2007. Content-based recommendation systems. In: The adaptive web Google Scholar. Springer, pp. 325–341.
Peleg, D. 1997. Local majority voting, small coalitions and controlling monopolies in graphs: A review. In: Proceedings of the third Colloquium on Structural Information and Communication Complexity Google Scholar, pp. 152–169.
Poli, R., Kennedy, J., and Blackwell, T. 2007. Particle swarm optimization. Swarm Intelligence, 1 CrossRef | Google Scholar(1).
Price, D.S. 1976. A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27 CrossRef | Google Scholar(5).
Prim, R.C. 1957. Shortest connection networks and some generalizations. Bell System Technical Journal, 36 CrossRef | Google Scholar(6), 1389–1401.
Quinlan, J.R. 1986. Induction of decision trees. Machine learning, 1 Google Scholar(1).
Quinlan, J.R. 1993. C4. 5: programs for machine learning Google Scholar. Morgan Kaufmann.
Rand, W.M. 1971. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association Google Scholar, 66.
Resnick, Paul, and Varian Hal, R. 1997. Recommender systems. Communications of the ACM, 40 CrossRef | Google Scholar(3), 56–58.
Robertson, T.S. 1967. The process of innovation and the diffusion of innovation. Journal ofMarketing Google Scholar, 31.
Rogers, E.M. 2003. Diffusion of innovations Google Scholar. Free Press.
Rohlfs, J.H., and Varian, H.R. 2003. Bandwagon effects in high-technology industries Google Scholar. The MIT Press.
Rousseeuw, P.J. 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics Google Scholar, 20.
Ryan, B., and Gross, N.C. 1943. The diffusion of hybrid seed corn in two Iowa communities. Rural Sociology, 8 Google Scholar(1), 15–24.
Salton, G., Wong, A., and Yang, C.S. 1975. A vector space model for automatic indexing. Communications of the ACM, 18 CrossRef | Google Scholar(11).
Salton, Gerard, and McGill Michael, J. 1986. Introduction to modern information retrieval Google Scholar, McGraw-Hill.
Sander, J., Ester, M., Kriegel, H.P., and Xu, X. 1998. Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 2 Google Scholar(2).
Sarwar, Badrul, Karypis, George, Konstan, Joseph, and Riedl, John. 2001. Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th international conference on the World Wide Web Google Scholar. ACM, pp. 285–295.
Scellato, S., Musolesi, M., Mascolo, C., Latora, V., and Campbell, A. 2011. Nextplace: a spatio-temporal prediction framework for pervasive systems. Pervasive Computing Google Scholar, 152–169.
Schafer Ben, J., Konstan, Joseph, and Riedi, John. 1999. Recommender systems in e-commerce. In: Proceedings of the First ACM conference on Electronic Commerce Google Scholar. ACM, pp. 158–166.
Schafer, J Ben, Frankowski, Dan, Herlocker, Jon, and Sen, Shilad. 2007. Collaborative filtering recommender systems. In: The adaptive web Google Scholar. Springer, pp. 291–324.
Scharfstein, D.S., and Stein, J.C. 1990. Herd behavior and investment. American Economic Review Google Scholar.
Schelling, T.C. 1971. Dynamic models of segregation. Journal of Mathematical Sociology, 1 CrossRef | Google Scholar(2).
Schelling, T.C. 1978. Micromotives and macrobehavior Google Scholar. Norton & Company.
Scott, John. 1988. Social network analysis. Sociology, 22 CrossRef | Google Scholar(1), 109–127.
Sen, Shilad, Vig, Jesse, and Riedl, John. 2009. Tagommenders: connecting users to items through tags. In: Proceedings of the 18th international conference on the World Wide Web Google Scholar. ACM, pp. 671–680.
Shalizi, C.R., and Thomas, A.C. 2010. Homophily and contagion are generically confounded in observational social network studies. Sociological Methods & Research, 40 Google Scholar(2).
Shiller, R.J. 1995. Conversation, information, and herd behavior. American Economic Review, 85 Google Scholar(2).
Sigurbjörnsson, Borkur, and Van Zwol, Roelof. 2008. Flickr tag recommendation based on collective knowledge. In: Proceedings of the 17th international conference on the WorldWide Web Google Scholar. ACM, pp. 327–336.
Simmel, G., and Hughes, E.C. 1949. The sociology of sociability. American Journal of Sociology Google Scholar, 55.
Simon, H.A. 1954. Bandwagon and underdog effects and the possibility of election predictions. Public Opinion Quarterly, 18 CrossRef | Google Scholar(3).
Simon, H.A. 1955. On a class of skew distribution functions. Biometrika, 42 CrossRef | Google Scholar(3/4).
Snijders, T.A.B., Steglich, C.E.G., and Schweinberger, M. 2006. Modeling the co-evolution of networks and behavior. In Longitudinal models in the behavioral and related sciences Google Scholar, Routledge.
Solomonoff, R., and Rapoport, A. 1951. Connectivity of random nets. Bulletin ofMath-ematical Biology, 13 Google Scholar(2).
Spaccapietra, S., Parent, C., Damiani, M.L., De Macedo, J.A., Porto, F., and Vangenot, C. 2008. A conceptual view on trajectories. Data and Knowledge Engineering, 65 CrossRef | Google Scholar(1), 126–146.
Stevens, S.S.On the Theory of Scales of Measurement, Science Google Scholar, 103.
Stephen P., Borgatti and Martin G., Everett. 1993. Two algorithms for computing regular equivalence. Social Networks, 15 Google Scholar(4).
Strang, D., and Soule, S.A. 1998. Diffusion in organizations and social movements: from hybrid corn to poison pills. Annual Review ofSociology Google Scholar, 24.
Strehl, A., Ghosh, J., and Cardie, C. 2002. Cluster ensembles-a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3 Google Scholar(3).
Su, Xiaoyuan, and Khoshgoftaar Taghi, M. 2009. A survey of collaborative filtering techniques. Advances in Artificial Intelligence Google Scholar, 4.
Sun, J., Faloutsos, C., Papadimitriou, S., and Yu, P.S. 2007. GraphScope: parameter-free mining of large time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge Discovery and Data Mining Google Scholar. ACM.
Tan, P.N., Steinbach, M., Kumar, V., et al. 2005. Introduction to data mining Google Scholar. Pearson Addison Wesley.
Tang, Jiliang, and Liu, Huan. 2012a. Feature Selection with Linked Data in Social Media CrossRef | Google Scholar. In: SDM.
Tang, Jiliang, and Liu, Huan. 2012b. Unsupervised Feature Selection for Linked Social Media Data CrossRef | Google Scholar. In: KDD.
Tang, Jiliang, and Liu, Huan. 2013. CoSelect: Feature Selection with Instance Selection for Social Media Data Google Scholar. In: SDM.
Tang, Jiliang, Gao, Huiji, Liu, Huan, and Sarma, Atish Das. 2012a. eTrust: understanding trust evolution in an online world Google Scholar. In: KDD.
Tang, Jiliang, Gao, Huiji, and Liu, Huan. 2012b. mTrust: discerning Multi-Faceted Trust in a Connected World CrossRef | Google Scholar. In: WSDM.
Tang, Jiliang, Gao, Huiji, Hu, Xia, and Liu, Huan. 2013a. Exploiting Homophily Effect for Trust Prediction. In: WSDM CrossRef | Google Scholar.
Tang, Jiliang, Hu, Xia, Gao, Huiji, and Liu, Huan. 2013b. Exploiting Local and Global Social Context for Recommendation Google Scholar. In: IJCAI.
Tang, L., and Liu, H. 2010. Community detection and mining in social media. Synthesis Lectures on Data Mining and Knowledge Discovery, 2 CrossRef | Google Scholar(1).
Tang, Lei, and Liu, Huan. 2009. Relational learning via latent social dimensions. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge Discovery and Data Mining Google Scholar. ACM, pp. 817–826.
Tang, Lei, Wang, Xufei, and Liu, Huan. 2012. Community Detection via Heterogeneous Interaction Analysis. Data Mining and Knowledge Discovery (DMKD), 25 Google Scholar(1), 1–33.
Tarde, G. 1907. Las leyes de la imitación: Estudio sociologico Google Scholar. Daniel Jorro.
Thanh, N., and Phuong, T.M. 2007. A Gaussian Mixture Model for Mobile Location Prediction. In: 2007 IEEE international conference on Research, Innovation and Vision for the Future Google Scholar, pp. 152–157.
Travers, J., and Milgram, S. 1969. An experimental study of the small world problem. Sociometry Google Scholar, 32.
Trotter, W. 1916. Instincts of the Herd in War and Peace Google Scholar.
Ugander, Johan, Karrer, Brian, Backstrom, Lars, and Marlow, Cameron. 2011. The Anatomy of the Facebook Social Graph Google Scholar, arXiv preprint arXiv:1111.4503.
Valente, T.W. 1995. Network models of the diffusion of innovations Google Scholar | PubMed, Hampton Press.
Valente, T.W. 1996a. Network models of the diffusion of innovations. Computational & Mathematical Organization Theory, 2 CrossRef | Google Scholar(2).
Valente, T.W. 1996b. Social network thresholds in the diffusion of innovations. Social Networks, 18 CrossRef | Google Scholar(1).
Veblen, T. 1899. The Theory of the Leisure Class Google Scholar.
Wang, F., and Huang, Q.Y. 2010. The importance of spatial-temporal issues for case-based reasoning in disaster management. In: 2010 18th international conference on Geoinformatics CrossRef | Google Scholar. IEEE, pp. 1–5.
Wang, S.S., Moon, S.I., Kwon, K.H., Evans, C.A., and Stefanone, M.A. 2009. Face off: implications of visual cues on initiating friendship on Facebook. Computers in Human Behavior, 26 Google Scholar(2).
Wang, Xufei, Tang, Lei, Gao, Huiji, and Liu, Huan. 2010. Discovering Overlapping Groups in Social Media. In: 10th IEEE international conference on Data Mining Google Scholar.
Wang, Xufei, Kumar, Shamanth, and Liu, Huan. 2011. A study of tagging behavior across social media. SIGIR Workshop on Social Web Search and Mining (SWSM) Google Scholar.
Warshall, S. 1962. A theorem on boolean matrices. Journal of the ACM (JACM), 9 CrossRef | Google Scholar(1).
Wasserman, S., and Faust, K. 1994. Social network analysis: Methods and applications CrossRef | Google Scholar. Cambridge University Press.
Watts, D.J. 1999. Networks, dynamics, and the small-world phenomenon 1. American Journal of Sociology, 105 CrossRef | Google Scholar(2).
Watts, D.J. 2002. A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences, 99 CrossRef | Google Scholar | PubMed(9).
Watts, D.J. 2003. Small worlds: the dynamics of networks between order and randomness Google Scholar. Princeton University Press.
Watts, D.J., and Dodds, P.S. 2007. Influentials, networks, and public opinion formation. Journal of Consumer Research, 34 CrossRef | Google Scholar(4).
Watts, D.J., and Strogatz, S.H. 1997. Collective dynamics of small-world networks. Nature, 393 Google Scholar(6684).
Welch, I. 1992. Sequential sales, learning, and cascades. Journal of Finance Google Scholar, 47.
Weng, J., Lim, E.P., Jiang, J., and He, Q. 2010. Twitterrank: finding topic-sensitive influential twitterers. In: Proceedings of the third ACM international conference on Web Search and Data Mining Google Scholar. ACM.
West, D.B. 2001. Introduction to graph theory. Vol. 2 Google Scholar. Prentice-Hall.
White, D.R. 1980. Structural equivalences in social networks: concepts and measurement of role structures. In: Research Methods in Social Network Analysis Conference Google Scholar, pp. 193–234.
White, D.R. 1984. Regge: a regular graph equivalence algorithm for computing role distances priorto blockmodeling. Unpublished manuscript, University of California, Irvine Google Scholar.
Witten, I.H., Frank, E., and Hall, M.A. 2011. Data Mining: practical machine learning tools and techniques Google Scholar. Morgan Kaufmann.
Xu, R., and Wunsch, D. 2005. Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16 CrossRef | Google Scholar | PubMed(3), 645–678.
Yang, J., and Leskovec, J. 2010. Modeling information diffusion in implicit networks. In: IEEE 10th International Conference on Data Mining Google Scholar.
Young, H.P. 1988. Individual strategy and social structure: an evolutionary theory of institutions Google Scholar. Princeton University Press.
Yule, G.U. 1925. A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis, FRS. Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character Google Scholar, 213.
Zachary, W.W. 1977. An information flow model for conflict and fission in small groups. Journal of Anthropological Research Google Scholar, 452–473.
Zafarani, Reza, and Liu, Huan. 2009a. Connecting Corresponding Identities across Communities. In: ICWSM Google Scholar.
Zafarani, Reza, and Liu, Huan. 2009b. Social computing data repository at ASU. School ofComputing, Informatics and Decision Systems Engineering Google Scholar, Arizona State University.
Zafarani, Reza, and Liu, Huan. 2013. Connecting users across social media sites: a behavioral-modeling approach. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge Discovery and Data Mining Google Scholar. KDD.
Zafarani, Reza, Cole, William D., and Liu, Huan. 2010. Sentiment propagation in social networks: a case study in Live Journal. In: Advances in Social Computing Google Scholar. Springer, pp. 413–420.
Zhao, Zheng Alan, and Liu, Huan. 2011. Spectral feature selection for data mining CrossRef | Google Scholar. Chapman & Hall/CRC.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 13858 *
Loading metrics...

Book summary page views

Total views: 21354 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th January 2025. This data will be updated every 24 hours.

Usage data cannot currently be displayed.