No CrossRef data available.
Published online by Cambridge University Press: 27 August 2024
The binary contact path process (BCPP) introduced in Griffeath (1983) describes the spread of an epidemic on a graph and is an auxiliary model in the study of improving upper bounds of the critical value of the contact process. In this paper, we are concerned with limit theorems of the occupation time of a normalized version of the BCPP (NBCPP) on a lattice. We first show that the law of large numbers of the occupation time process is driven by the identity function when the dimension of the lattice is at least 3 and the infection rate of the model is sufficiently large conditioned on the initial state of the NBCPP being distributed with a particular invariant distribution. Then we show that the centered occupation time process of the NBCPP converges in finite-dimensional distributions to a Brownian motion when the dimension of the lattice and the infection rate of the model are sufficiently large and the initial state of the NBCPP is distributed with the aforementioned invariant distribution.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.