Published online by Cambridge University Press: 09 March 2009
Computer simulation is a major tool in validation of robot motion planning systems, since, on the one hand, underlying theory of algorithms typically requires questionable assumptions and simplifications, and, on the other hand, experiments with hardware are necessarily limited by available resources and time. This is especially true when the motion planning system in question is based on sensor feedback and the generated trajectory is, therefore, unpredictable. This paper describes a simulation system ROPAS (for RObot PAth Simulation) for testing one approach — called Dynmic Path Planning (DPP) — to sensor-based robot collision avoidance in an environment with unknown obstacles. Using real time graphics animation of the motion planning system, the user can simulate the behavior of an autonomous vehicle or a robot arm manipulator with a fixed base. The overall structure of the system is described, and examples are presented.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.