Published online by Cambridge University Press: 09 March 2009
This paper focuses on developing a planning strategy for robotic assembly. At first, channel and junction are defined by using half-spaces, and free-space inside the female part is approximately decomposed by channels and junctions. Then, a simple and efficient algorithm to find the assembly path of the male part is developed, in which any path between the shortest and safest paths can be easily found by just changing the clearance gap between the male and female parts. Next, the robot arm is considered in the path planning, in which a feasible grasp angle region is obtained to avoid a collision between the robot arm and the female part during the assembly process. An optimum grasping angle can be found in the feasible grasping angle region by applying a proper performance index. Finally, a simple robotic assembly using the algorithm is numerically demonstrated.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.