Published online by Cambridge University Press: 15 January 2009
Several problems of practical interest in robotics can be modelled as the convolution of functions on the Euclidean motion group. These include the evaluation of reachable positions and orientations at the distal end of a robot manipulator arm. A natural inverse problem arises when one wishes to design rather than to model manipulators. Namely, by considering a serial-chain robot arm as a concatenation of segments, we examine how statistics of known segments can be used to select, or design, the remainder of the structure so as to attain the desired statistical properties of the whole structure. This is then a deconvolution density estimation problem for the Euclidean motion group. We prove several results about the convergence of these deconvolution estimators to the true underlying density under certain smoothness assumptions. A practical implementation to the design of planar robot arms is demonstrated.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.