Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T17:13:10.264Z Has data issue: false hasContentIssue false

Kinematic modelling of a 5-DOF hybrid parallel robot for laparoscopic surgery*

Published online by Cambridge University Press:  10 January 2012

Doina Pisla
Affiliation:
Technical University of Cluj-Napoca, Memorandumului 28, RO-400114 Cluj-Napoca, Romania
Bogdan Gherman*
Affiliation:
Technical University of Cluj-Napoca, Memorandumului 28, RO-400114 Cluj-Napoca, Romania
Calin Vaida
Affiliation:
Technical University of Cluj-Napoca, Memorandumului 28, RO-400114 Cluj-Napoca, Romania
Nicolae Plitea
Affiliation:
Technical University of Cluj-Napoca, Memorandumului 28, RO-400114 Cluj-Napoca, Romania
*
Corresponding author. E-mail: bogdangherman@gmail.com

Summary

Robotic-assisted surgery is a continuously developing field because robots have demonstrated clear benefits in operating rooms. Until now, vast majority of robots used in surgery had serial structures. This paper presents the kinematic modelling of a 5-degree of freedom hybrid parallel architecture in two slightly different variants. The kinematics of this structure is determined, and following the analysis of singularities, the best variant is chosen. The robot workspace is computed and finally the experimental model and some simulation results are presented.

Type
Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

The scientific contribution is equally divided between the authors.

References

1. Biomed Homepage, http://biomed.brown.edu (2010).Google Scholar
2. Plitea, N., Hesselbach, J., Vaida, C., Raatz, A., Pisla, D., Budde, C., Vlad, L., Burisch, A. and Senner, R., “Innovative Development of Surgical Parallel Robots,” Acta Electron. Mediamira Sci. (Cluj-Napoca) 201–206 (2007).Google Scholar
3. Bozovic, V., ed., Medical Robotics (I-Tech Education and Publishing, Denmark, 2008).CrossRefGoogle Scholar
4. Taylor, R. and Stulberg, S., “Medical Robotics Working Group Section Report,” Proceedings of NSF Workshop on Medical Robotics and Computer-Assisted Medical Interventions, Bristol, England (1996).Google Scholar
5. Ortmaier, T., Weiss, H. and Falk, V., “Design requirements for a new robot for minimally invasive surgery,” Ind. Robot Int. J. 31 (6), 93498 (2004).CrossRefGoogle Scholar
6. Kraft, B. M., Jager, C., Kraf, K. and Bittner, R., “The AESOP robot system in laparoscopic surgery: Increased risk or advantage for surgeon and patient?,” Surg. Endosc. 18 (8), 12161223 (2004).CrossRefGoogle ScholarPubMed
7. Mettler, L., Ibrahim, M. and Jonat, W., “One year of experience working with the aid of a robotic assistant (the voice-controlled optic holder AESOP) in gynaecological endoscopic surgery,” Hum. Reprod. 13 (10), 27482750 (1998).CrossRefGoogle Scholar
8. Long, J. A., Descotes, J. L., Skowron, O., Trocaz, J., Cinquin, P., Boillot, B., Terrier, N. and Rambeaud, J. J., “Use, of robotics in laparoscopic urological surgery: State of the art,” Prog. Urol. 16 (1), 311 (2006).Google ScholarPubMed
9. Taylor, R. H., Funda, J., Eldridge, B., Gomory, S., Gruben, K., LaRose, D., Talamini, M., Kavoussi, L. and Anderson, J., “A telerobotic assistant for laparoscopic surgery,” Eng. Med. Biol. Mag. 14 (3), 279288 (1995).CrossRefGoogle Scholar
10. Aiono, S., Gilbert, J. M., Soin, B., Finlay, P. A. and Gordan, A., “Controlled trial of the introduction of a robotic camera assistant (EndoAssist) for laparoscopic cholecystectomy,” Surg. Endosc. 16 (9), 12671270 (2002).CrossRefGoogle ScholarPubMed
11. Nebot, P. B., Jain, Y., Haylett, K., Stone, R. and McCloy, R., “Comparison of task performance of the camera holder robots EndoAssist and Aesop,” Surg. Laparosc. Endosc. Percutan. Tech. 13 (5), 334338 (2003).CrossRefGoogle ScholarPubMed
12. Degani, A., Wolf, A. and Zenati, M., “Highly Articulated Robotic Probe for Minimally Invasive Surgery,” In: IEEE International Conference on Robotics and Automation, Orlando, FL, USA (May 16–18, 2006) pp. 41674172.Google Scholar
13. Kobayashi, E., Masamune, K., Sakuma, I., Dohi, T. and Hashimoto, D., “A new safe laparscopic manipuator system with a five-bar linkage mechanism and an optical zoom,” Comput. Aided Surg. 4, 182192 (1999).CrossRefGoogle Scholar
14. Rininsland, H., “ARTEMIS. A telemanipulator for cardiac surgery,” Eur. J. Cardiothorac. Surg. 16 (2), 106111 (1999).Google Scholar
15. Polet, R. and Donnez, J., “Using a laparoscope manipulator (LapMan®) in laparoscopic gynecological surgery,” Surg. Technol. Int. XVII 17, 187191 (2008).Google Scholar
16. Prosurgics Limited, http://www.freehandsurgeon.com (2009).Google Scholar
17. Voros, S., Haber, G.-P., Menudet, J.-F., Long, J.-A. and Cinquin, P., “ViKY robotic scope holder: Initial clinical experience and preliminary results using instrument tracking,” IEEE/ASME Trans. Mechatronics 15 (6), 879886 (2010).Google Scholar
18. Saing, V., Sotthivirat, S., Vilasrussamee, R. N. and Suthakorn, J., “Design of a New Laparoscopic Holder Assisting Robot,” In: Proceedings of the 3rd International Symposium on Biomedical Engineering, Bangkok, Thailand (2008) pp. 278281.Google Scholar
19. Intuitive Surgical Homepage, http://www.intuitivesurgical.com (2010).Google Scholar
20. Morvan, T., Martinsen, M., Reimers, M., Samset, E. and Elle, O. J., “Collision detection and untangling for surgical robotic manipulators,” Int. J. Med. Robot. Comput. Assist. Surg. 5, 233242 (2009), DOI: 10.1002/rcs.247.CrossRefGoogle ScholarPubMed
21. Titan Medical Homepage, http://www.titanmedicalinc.com/ (2010).Google Scholar
22. Hagn, U., Konietschke, R., Tobergte, A., Nickl, M., Jörg, S., Kübler, B., Passig, G., Gröger, M., Fröhlich, F., Seibold, U., Le-Tien, L., Albu-Schäffer, A., Nothhelfer, A., Hacker, F., Grebenstein, M. and Hirzinger, G., “DLR MiroSurge: a versatile system for research in endoscopic telesurgery,” Int. J. Comput. Assist. Radiol. Surg. 5 (2), 183193 (2009), DOI: 10.1007/s11548-009-0372-4.CrossRefGoogle ScholarPubMed
23. Pisla, D., Plitea, N. and Vaida, C., “Kinematic Modeling and Workspace Generation for a New Parallel Robot Used in Minimally Invasive Surgery,” In: Advances in Robot Kinematics: Analysis and Design (Lenarcic, J., Wenger, P. Eds.) (Springer, Berlin, 2008) pp. 459468.CrossRefGoogle Scholar
24. Plitea, N., Pisla, D. and Vaida, C., “On kinematics of a parallel robot for minimally invasive surgery,” PAMM 7 (1), 40100334010034 (2007).CrossRefGoogle Scholar
25. Vaida, C., “Contributions to the Development and Kinematic-Dynamic Modelling of Parallel Robots for MIS,” Ph.D. thesis Cluj-Napoca, Romania (2009).Google Scholar
26. Merlet, J.-P., Parallel Robots (Kluwer, 2006).Google Scholar
27. Antal, T. A., “A new algorithm for helical gear design with addendum modification,” Mechanika 3 (77), 5357 (2009).Google Scholar
28. Antal, T. A., “A new algorithm for cylindrical worm gears dimensioning based on the hydrodynamic lubrication conditions between the teeth flanks,” Mechanika 17 (4), 400403 (2011).Google Scholar
29. Simaan, N., Taylor, R. and Flint, P., “A Dexterous System for Laryngeal Surgery,” In: ICRA ‘04, New Orleans, LA, USA (2004) pp. 351357.Google Scholar
30. Lum, M. J. H., Rosen, J., Sinanan, M. N. and Hannaford, B., “Kinematic Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot,” In: Proceedings of the IEEE ICRA 2004, New Orleans, LA, USA (2004) pp.829834.Google Scholar
31. Beasley, R. A., Howe, R. D. and Dupont, P. E., “Kinematic Error Correction for Minimally Invasive Surgical Robots,” In: ICRA ‘04, New Orleans, LA, USA (2004) vol. 1, pp. 358364.Google Scholar
32. Liu, D., Wang, T., Tang, C. and Zhang, F., “A hybrid robot system for CT-guided surgery,” Robotica (Cambridge University Press), 28, 253258 (2009) DOI: 10.1017/S0263574709990671 Google Scholar
33. Carbone, G. and Ceccarelli, M.. “A serial-parallel robotic architecture for surgical tasks,” Robotica: Int. J. 23, 345354 (2005).CrossRefGoogle Scholar
34. Carbone, G. and Ceccarelli, M.A stiffness analysis for a hybrid parallel-serial manipulator,” Robotica: Int. J. 22, 567576 (2004).CrossRefGoogle Scholar
35. Carbone, G., Nakadate, R., Solis, J., Ceccarelli, M., Takanishi, A., Minagawa, E., Sugawara, M. and Niki, K., “A Workspace Analysis and Design Improvements of a Carotid Blood Flow Measurement System,” In: Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine (2010) pp. 13111323.Google Scholar
36. Pisla, D., Plitea, N., Gherman, B., Pisla, A. and Vaida, C., “Kinematical Analysis and Design of a New Surgical Parallel Robot,” In: Computational Kinematics (Springer, Berlin, 2009) pp. 273282.CrossRefGoogle Scholar
37. Plitea, N., Pisla, D., Vaida, C. and Gherman, B., “Surgical robot,” Patent Pending No. a00525/7.07.2009 (Romania, 2009).Google Scholar
38. Pisla, D., Plitea, N., Gherman, B. G., Vaida, C., Pisla, A. and Suciu, M., “Kinematics and Design of a 5-DOF Parallel Robot Used in Minimally Invasive Surgery,” In: Advances In Robot Kinematics: Motion in Man and Machine, Part 2 (Lenarcic, J. and Stanisic, M. M., eds.) (Springer, Berlin, 2010) pp. 99106.CrossRefGoogle Scholar
39. Plitea, N., Hesselbach, J., Pisla, D., Raatz, A., Vaida, C., Wrege, J. and Burisch, A., “Innovative development of parallel robots and microrobots,” Acta Tehnica Napocensis Ser. Appl. Math. Mech. 49 (5), 526 (2006).Google Scholar
40. Gosselin, C. and Angeles, J., “Singularity analysis of closed-loop kinematic chains,” IEEE Trans. Robot. Autom. 6 (3), 281290 (1990).CrossRefGoogle Scholar
41. Gherman, B., Vaida, C., Pisla, D., Plitea, N., Gyurka, B., Lese, D. and Glogoveanu, M., “Singularities and workspace analysis for a parallel robot for minimally invasive surgery,” In: 2010 IEEE International Conference on Automation Quality and Testing Robotics (AQTR), Cluj-Napoca, Romania (May 28–30, 2010) pp. 16.Google Scholar
42. Maxon Motor AG, “Maxon Motor Control,” User CD-ROM (2008).Google Scholar
43. B & R, “Automation Studio, Control Software,” DVD-ROM (2011).Google Scholar
44. Erdelyi, H. and Talaba, D., “Virtual prototyping of a car turn-signal switch,” Eng. Comput. 26, 99110 (2010).CrossRefGoogle Scholar
45. Pisla, D., Gherman, B., Plitea, N., Gyurka, B., Vaida, C., Vlad, L., Graur, F., Radu, C., Suciu, M., Szilaghi, A. and Stoica, A., “PARASURG hybrid parallel robot for minimally invasive surgery,” Chirurgia (Bucur) 106 (5), 619625 (2011).Google ScholarPubMed