Published online by Cambridge University Press: 13 February 2012
In this paper we address the problem of stabilization and local positioning of a four-rotor rotorcraft using computer vision. Our approaches to estimate the orientation and position of the rotorcraft combine the measurements from an Inertial Measurement Unit (IMU) and a vision system composed of a single camera. In the first stage, the vision system is used to estimate the position and yaw angle of the rotorcraft, while in the second stage the vision system is used to estimate the translational velocity of the flying robot. In both cases the IMU gives the pitch and roll angles at a higher rate. The technique used to estimate the position of the rotorcraft in the first stage combines the homogeneous transformation approach for the camera calibration process with the plane-based pose method for estimating the position. In the second stage, a navigation system using the optical flow is also developed to estimate the translational velocity of the aircraft. We present real-time experiments of stabilization and location of a four-rotor rotorcraft.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.