Published online by Cambridge University Press: 07 May 2021
In order to improve the working performance of the lower limb rehabilitation robot and the safety of the trained object, the mechanical characteristics of a cable-driven lower limb rehabilitation robot (CDLR) are studied. The dynamic model of the designed CDLR was established. Four kinds of cable tension optimization algorithms were proposed to obtain a good rehabilitation training effect, and the quality of the feasible workspace of the CDLR was analyzed. Finally, a real-time evaluation index of the cable tension optimization algorithms was given to measure the calculation speed of the optimization algorithms. The numerical research results were provided to confirm the characteristics of the four kinds of the optimization algorithms. The research results provide a basis for the follow-up research on the safety and compliance control strategy of the CDLR system.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.