Published online by Cambridge University Press: 14 May 2021
In this paper, a new method is proposed to find a feasible energy-efficient path between an initial point and goal point on uneven terrain and then to optimally traverse the path. The path is planned by integrating the geometric features of the uneven terrain and the biped robot dynamics. This integrated information of biped dynamics and associated cost (energy) for moving toward the goal point is used to define the value of a new speed function at each point on the discretized surface of the terrain. The value is stored as a matrix called the dynamic transport cost (DTC). The path is obtained by solving the Eikonal equation numerically by fast marching method (FMM) on an orthogonal grid, by using the information stored in the DTC matrix. One step of walk on uneven terrain is characterized by 10 footstep parameters (FSPs); these FSPs represent the position of swinging foot at the starting and ending time of the walk, orientation, and state (left or right) of support foot. A walking dataset was created for different walking conditions (FSPs), which the biped robot is likely to encounter when it has to walk on the uneven terrain. The corresponding energy optimal hip and foot trajectory parameters (HFTPs) are obtained by optimization using a genetic algorithm (GA). The created walk dataset is generalized by training a feedforward neural network (NN) using the scaled conjugate gradient (SCG) algorithm. The Foot placement planner gives a sequence of foot positions and orientations along the obtained path, which is followed by the biped robot by generating real-time optimal foot and hip trajectories using the learned NN. Simulation results on different types of uneven terrains validate the proposed method.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.