Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T14:55:14.674Z Has data issue: false hasContentIssue false

Performance evaluation of a special 6-PUS type parallel manipulator

Published online by Cambridge University Press:  14 June 2021

Xiaochu Liu
Affiliation:
School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin150080, China
Yunfei Cai*
Affiliation:
School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin150001, China
Weitian Liu
Affiliation:
AECC Aero Engine Control System Institute, Aero Engine Corporation of China, Wuxi214000, China
Linlong Zhang
Affiliation:
Institute of Large Tonnage, Sany Automobile Manufacturing Co. Ltd, Changsha410604, China
Chengxin Hu
Affiliation:
Heilongjiang Mechanic Science Institute, Harbin150040, China
*
*Corresponding author. Email: caiyfhit@foxmail.com

Abstract

In this paper, a special 6-PUS parallel manipulator (PM) is utilized as a shaking table. Unlike the existing results about 6-PUS PMs, we make the actuator direction collinear with the linkage direction at neutral position. With respect to the application background, a further analysis of the special PM is carried out from the perspective of motion/force transmissibility, natural frequency and acceleration capability. Specially, the complete dynamics model is established based on the Kane method. Then, generalized transmission indices based on the screw theory are utilized to reflect its motion ability, and a model of natural frequency is proposed with the axial stiffness of linkages considered. Finally, the effect of the angle between the actuator direction and the linkage direction α on various performances is analyzed, and other results are included to illustrate its feasibility and usability.

Type
Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Merlet, J. P., Parallel Robots (Springer, New York, 2005).Google Scholar
Shen, G., Li, X., Zhu, Z., Tang, Y., Zhu, W. and Liu, S., “Acceleration tracking control combining adaptive control and off-line compensators for six-degree-of-freedom electro-hydraulic shaking tables,” ISA Trans. 70, 322337 (2017). doi: http://dx.doi.org/10.1016/j.isatra.2017.07.018.CrossRefGoogle ScholarPubMed
Ruiz-García, J., Zavala-Yoe, R., Chaparro-Altamirano, D. and Ramírez-Mendoz, RA., “Direct Kinematics of a 6-PUS Parallel Robot Using a Numeric-Geometric Method,” IEEE International Conference on Mechatronics, Electronics and Automotive Engineering (2013) pp. 4650. doi: http://dx.doi.org/10.1109/ICMEAE.2013.12.CrossRefGoogle Scholar
Kong, L., Zhang, S., Xiao, W., Li, CY. and Huang, Z., “Rigid body dynamics model of the 6-PUS parallel mechanism based on Newton-Euler method,” Robot. 26(5), 395399 (2004). doi: http://dx.doi.org/10.1007/BF02873091.Google Scholar
Wang, H., Chen, G., and Lin, Z., “Forward dynamics analysis of the 6-PUS mechanism based on platform-legs composite simulation,” Chin. J. Mech. Eng. 22(4), 496504 (2009). doi: http://dx.doi.org/10.10.3901/CJME.2009.04.496.CrossRefGoogle Scholar
Kim, J. P. and Ryu, J., “Inverse kinematic and dynamic analyses of 6-DOF PUS type parallel manipulators,” KSME Int. J. 16(1), 1323 (2002). doi: http://dx.doi.org/10.1007/bf03185151.CrossRefGoogle Scholar
Rao, A. B. K., Saha, S. K. and Rao, P. V. M., “Dynamics modeling of hexaslides using the decoupled natural orthogonal complement matrices,” Multibody Syst. Dyn. 15(2), 159180 (2006). doi: http://dx.doi.org/10.1007/s11044-005-9003-1.CrossRefGoogle Scholar
Tan, X., Xie, Z. and Xie, Y., “Singularity judge deriving and singularity analysis for 6_PUS parallel mechanism,” Trans. Chin. Soc. Agricul. Mach. 43(12) 234250 (2012). doi: http://dx.doi.org/10.6041/j.issn.1000-1298.2012.12.042.Google Scholar
Tan, X., Zhang, J. and Xie, Z., “Motion error modeling and compensating for 6_PUS parallel robot of wind tunnel support system,” Trans. Chin. Soc.r Agric. Mach. 45(4), 334346 (2014). doi: http://dx.doi.org/10.6041/j.issn.1000-1298.2014.04.053.Google Scholar
Tan, X., Jia, S. and Xie, Z., “Optimization design for dynamics performance parameters of 6-PUS parallel robot,” J. Eng. Des. 20(6), 470475 (2013). doi: http://dx.doi.org/10.3785/j.issn.1006-754X.2013.06.004.Google Scholar
Narayanan, M. S., Chakravarty, S., Shah, H. and Krovi, V. N., “Kinematic-, Static- and Workspace Analysis of a 6-PUS Parallel Manipulator,” ASME International on Design Engineering Technical (2010) pp. 18. doi: http://dx.doi.org/10.1115/DETC2010-28978.Google Scholar
Wang, J., Wu, C. and Liu, X., “Performance evaluation of parallel manipulators: Motion/force transmissibility and its index,” Mech. Mach. Theory 45(10), 14621476 (2010). doi: http://dx.doi.org/10.1016/j.mechmachtheory.2010.05.001.CrossRefGoogle Scholar
Zhang, S. and Kong, L., “Analysis on Kinematics and Dynamics Performance indices for 6-PUS Parallel Robot Mechanism,” IEEE International Conference on Networking, Sensing and Control (2007) pp. 501506. doi: http://dx.doi.org/10.1109/icnsc.2007.372829.CrossRefGoogle Scholar
Tan, X. and Xie, Z., Study on flexible dynamics of 6_PUS parallel support robot,” Mach. Des. Manuf. 2, 33135 (2014). doi: http://dx.doi.org/10.19356/j.cnki.1001-3997.2014.02.042.CrossRefGoogle Scholar
Wu, J., Li, T., Wang, J. and Wang, L., “Stiffness and natural frequency of a 3-DOF parallel manipulator with consideration of additional leg candidates,” Rob. Auto. Syst. 61(8), 868875 (2013). doi: http://dx.doi.org/10.1016/j.robot.2013.03.001.CrossRefGoogle Scholar
Huang, T., Zhao, X. and Whitehouse, D. J., “Stiffness estimation of a tripod-based parallel kinematic machine,” IEEE Trans. Rob. Autom. 18(1), 5058 (2002). doi: http://dx.doi.org/10.1109/70.988974.CrossRefGoogle Scholar
Li, Y. and Xu, Q., “Stiffness analysis for a 3-PUU parallel kinematic machine,” Mech. Mach. Theory 43(2), 186200 (2008). doi: http://dx.doi.org/10.1016/j.mechmachtheory.2007.02.002.CrossRefGoogle Scholar
Piras, G., Cleghorn, W. L. and Mills, J. K., “Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links,” Mech. Mach. Theory, 40(7), 849862 (2005). doi: http://dx.doi.org/10.1016/j.mechmachtheory.2004.12.007.CrossRefGoogle Scholar
Huang, T. Y. and Lee, J. J., “On obtaining machine tool stiffness by CAE techniques,” Int. J. Mach. Tools Manuf. 41(8), 11491163 (2001). doi: http://dx.doi.org/10.1016/S0890-6955(01)00012-8.CrossRefGoogle Scholar
Pinto, C., Corral, J., Altuzarra, O. and Hernández, A., “A methodology for static stiffness mapping in lower mobility parallel manipulators with decoupled motions,” Robotica 285, 719735 (2010). doi: http://dx.doi.org/10.1017/S0263574709990403.CrossRefGoogle Scholar
Herrero, S., Pinto, C., Diez, M. and Corral, J., “Analytical procedure based on the matrix structural method for the analysis of the stiffness of the 2PRU–1PRS parallel manipulator,” Robotica 378, 14011414 (2019). doi: http://dx.doi.org/10.1017/S026357471900002X.CrossRefGoogle Scholar
He, Z., Song, X. and Xue, D., “Comments to the: ‘Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach’ and ‘A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator’,” Mech. Mach. Theory 102(10), 229231 (2016). doi: http://dx.doi.org/10.1016/j.mechmachtheory.2008.02.015.CrossRefGoogle Scholar
Lynch, K. M. and Park, F. C., Modern Robotics: Mechanics, Planning, and Control (Cambridge Univeristy Press, Cambridge, 2017).Google Scholar
Zhao, Y., Wang, J., Cao, Y., Liang, B. and Zhao, T.Constant motion/force transmission analysis and synthesis of a class of translational parallel mechanisms,” Mech. Mach. Theory, 108, 5774 (2017). doi: http://dx.doi.org/10.1016/j.mechmachtheory.2016.10.008.CrossRefGoogle Scholar
Chen, X., Chen, C. and Liu, X., “Evaluation of force/torque transmission quality for parallel manipulators,” J. Mech. Rob., 7(4), 041013 (2015). doi: http://dx.doi.org/10.1115/1.4029188.CrossRefGoogle Scholar
Chen, X., Liu, X.-J., Xie, F. and Sun, T., “A comparison study on motion/force transmissibility of two typical 3-DOF parallel manipulators: The sprint Z3 and A3 tool heads,” Int. J. Adv. Rob. Syst., 11(1), 110 (2014). doi: http://dx.doi.org/10.5772/57458.Google Scholar
Chen, C. and Angeles, J., “Generalized transmission index and transmission quality for spatial linkages,” Mech. Mach. Theory 42(9), 12251237 (2007). doi: http://dx.doi.org/10.1016/j.mechmachtheory.2006.08.001.CrossRefGoogle Scholar
Gosselin, C., “Stiffness mapping for parallel manipulators,” IEEE Trans. Rob. Autom. 6(3), 377382 (1990). doi: http://dx.doi.org/10.1109/70.56657.CrossRefGoogle Scholar
Li, Y., Xi, F., Daniel, F. A. and Behdinan, K., “Dynamic modeling and analysis of a circular track-guided tripod,” J. Comput. Nonlinear Dyn. 51, 125133 (2010). doi: http://dx.doi.org/10.1115/1.4000313.Google Scholar
Zhao, Y. and Gao, F., “Dynamic formulation and performance evaluation of the redundant parallel manipulator,” Rob. Comput. Integr. Manuf. 254, 770781 (2009). doi: http://dx.doi.org/10.1016/j.rcim.2008.10.001.CrossRefGoogle Scholar
Li, Y., Wang, J., Liu, X.-J. and Wang, L., “Dynamic performance comparison and counterweight optimization of two 3-DOF parallel manipulators for a new hybrid machine tool,” Mech. Mach. Theory 4511, 16681680 (2010). doi: http://dx.doi.org/10.1016/j.mechmachtheory.2010.06.009.CrossRefGoogle Scholar
Zhao, Y. and Gao, F., “Dynamic performance comparison of the 8PSS redundant parallel manipulator and its non-redundant counterpart-the 6PSS parallel manipulator,” Mech. Mach. Theory 445, 1991–1008 (2009). doi: http://dx.doi.org/10.1016/j.mechmachtheory.2008.05.015.Google Scholar